About: K-Means Clustering for Problems with Periodic Attributes     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The K-means algorithm is very popular in the machine learning community due to its inherent simplicity. However, in its basic form, it is not suitable for use in problems which contain periodic attributes, such as oscillator phase, hour of day or directional heading. A commonly used technique of trigonometrically encoding periodic input attributes to artificially generate the required topology introduces a systematic error. In this paper, a metric which induces a conceptually correct topology for periodic attributes is embedded into the K-means algorithm. This requires solving a non-convex minimization problem in the maximization step. Results of numerical experiments comparing the proposed algorithm to K-means with trigonometric encoding on synthetically generated data are reported. The advantage of using the proposed K-means algorithm is also shown on a real example using gas load data to build simple predictive models.
  • The K-means algorithm is very popular in the machine learning community due to its inherent simplicity. However, in its basic form, it is not suitable for use in problems which contain periodic attributes, such as oscillator phase, hour of day or directional heading. A commonly used technique of trigonometrically encoding periodic input attributes to artificially generate the required topology introduces a systematic error. In this paper, a metric which induces a conceptually correct topology for periodic attributes is embedded into the K-means algorithm. This requires solving a non-convex minimization problem in the maximization step. Results of numerical experiments comparing the proposed algorithm to K-means with trigonometric encoding on synthetically generated data are reported. The advantage of using the proposed K-means algorithm is also shown on a real example using gas load data to build simple predictive models. (en)
Title
  • K-Means Clustering for Problems with Periodic Attributes
  • K-Means Clustering for Problems with Periodic Attributes (en)
skos:prefLabel
  • K-Means Clustering for Problems with Periodic Attributes
  • K-Means Clustering for Problems with Periodic Attributes (en)
skos:notation
  • RIV/67985807:_____/09:00328432!RIV10-AV0-67985807
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1ET400300513), Z(AV0Z10300504)
http://linked.open...iv/cisloPeriodika
  • 4
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 321878
http://linked.open...ai/riv/idVysledku
  • RIV/67985807:_____/09:00328432
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • clustering algorithms; similarity measures; K-means; periodic attributes (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • SG - Singapurská republika
http://linked.open...ontrolniKodProRIV
  • [E1374372C488]
http://linked.open...i/riv/nazevZdroje
  • International Journal of Pattern Recognition and Artificial Intelligence
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 23
http://linked.open...iv/tvurceVysledku
  • Musílek, P.
  • Paluš, Milan
  • Vejmelka, Martin
  • Pelikán, Emil
http://linked.open...ain/vavai/riv/wos
  • 000267117500003
http://linked.open...n/vavai/riv/zamer
issn
  • 0218-0014
number of pages
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 100 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software