About: On Worst-Case GMRES, ideal GMRES, and the Polynomial Numerical Hull of a Jordan block     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • When solving a linear algebraic system Ax = b with GMRES, the relative residual norm at each step is bounded from above by the so-called ideal GMRES approximation. This worst-case bound is sharp (i.e. it is attainable by the relative GMRES residual norm) in case of a normal matrix A , but it need not characterize the worst-case GMRES behavior if A is nonnormal. Characterizing the tightness of this bound for nonnormal matrices A represents an important and largely open problem in the convergence analysis of Krylov subspace methods. In this paper we address this problem in case A is a single Jordan block. We study the relation between ideal and worst-case GMRES as well as the problem of estimating the ideal GMRES approximation. Furthermore, we prove new results about the radii of the polynomial numerical hulls of Jordan blocks. Using these, we discuss the closeness of the lower bound on the ideal GMRES approximation that is derived from the radius of the polynomial numerical hull.
  • When solving a linear algebraic system Ax = b with GMRES, the relative residual norm at each step is bounded from above by the so-called ideal GMRES approximation. This worst-case bound is sharp (i.e. it is attainable by the relative GMRES residual norm) in case of a normal matrix A , but it need not characterize the worst-case GMRES behavior if A is nonnormal. Characterizing the tightness of this bound for nonnormal matrices A represents an important and largely open problem in the convergence analysis of Krylov subspace methods. In this paper we address this problem in case A is a single Jordan block. We study the relation between ideal and worst-case GMRES as well as the problem of estimating the ideal GMRES approximation. Furthermore, we prove new results about the radii of the polynomial numerical hulls of Jordan blocks. Using these, we discuss the closeness of the lower bound on the ideal GMRES approximation that is derived from the radius of the polynomial numerical hull. (en)
  • Řešíme-li soustavu lineárních algebraických rovnic $Ax=b$ metodou GMRES, lze relativní normu residua omezit shora pomocí tzv. ideální GMRES. Pro normální matice charakterizuje ideální GMRES nejhorší možné chování metody GMRES (worst-case GMRES). Ideální a worst-case GMRES se však mohou lišit pro matice, které nejsou normální. Charakterizace vztahu mezi ideální a worst-case GMRES pro nenormální matice představuje důležitý otevřený problém v oblasti konvergenční analýzy krylovovských metod. V práci se zabýváme tímto problémem pro případ, kdy $A$ je Jordanův blok. Studujeme vztah mezi ideální a worst-case GMRES jakož i odhad hodnoty ideální GMRES v závislosti na iteračním kroku a na vlastním čísle Jordanova bloku. Prezentujeme nové výsledky týkající se určování velikostí poloměrů polynomiálních numerických obalů Jordanova bloku. Na základě těchto výsledků diskutujeme kvalitu známého odhadu hodnoty ideální GMRES, založeného na poloměru polynomiálního numerického obalu. (cs)
Title
  • On Worst-Case GMRES, ideal GMRES, and the Polynomial Numerical Hull of a Jordan block
  • O worst-case GMRES, ideální GMRES a o polynomiálním numerickém obalu Jordanova bloku (cs)
  • On Worst-Case GMRES, ideal GMRES, and the Polynomial Numerical Hull of a Jordan block (en)
skos:prefLabel
  • On Worst-Case GMRES, ideal GMRES, and the Polynomial Numerical Hull of a Jordan block
  • O worst-case GMRES, ideální GMRES a o polynomiálním numerickém obalu Jordanova bloku (cs)
  • On Worst-Case GMRES, ideal GMRES, and the Polynomial Numerical Hull of a Jordan block (en)
skos:notation
  • RIV/67985807:_____/07:00092720!RIV08-AV0-67985807
http://linked.open.../vavai/riv/strany
  • 453;473
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1ET400300415), Z(AV0Z10300504)
http://linked.open...iv/cisloPeriodika
  • -
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 439474
http://linked.open...ai/riv/idVysledku
  • RIV/67985807:_____/07:00092720
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • GMRES convergence; ideal GMRES; polynomial numerical hull; Jordan block (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [7E741EA5E58B]
http://linked.open...i/riv/nazevZdroje
  • Electronic Transactions on Numerical Analysis
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 26
http://linked.open...iv/tvurceVysledku
  • Tichý, Petr
  • Faber, V.
  • Liesen, J.
http://linked.open...n/vavai/riv/zamer
issn
  • 1068-9613
number of pages
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software