About: Rank of tensors of l-out-of-k functions: an application in probabilistic inference     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • We study the problem of efficient probabilistic inference with Bayesian networks when some of the conditional probability tables represent deterministic or noisy l-out-of-k functions. These tables appear naturally in real-world applications when we observe a state of a variable that depends on its parents via an addition or noisy addition relation. We provide a lower bound of the rank and an upper bound for the symmetric border rank of tensors representing l-out-of-k functions. We propose an approximation of tensors representing noisy l-out-of-k functions by a sum of r tensors of rank one, where r is an upper bound of the symmetric border rank of the approximated tensor. We applied the suggested approximation to probabilistic inference in probabilistic graphical models. Numerical experiments reveal that we can get a gain in the order of two magnitudes but at the expense of a certain loss of precision.
  • We study the problem of efficient probabilistic inference with Bayesian networks when some of the conditional probability tables represent deterministic or noisy l-out-of-k functions. These tables appear naturally in real-world applications when we observe a state of a variable that depends on its parents via an addition or noisy addition relation. We provide a lower bound of the rank and an upper bound for the symmetric border rank of tensors representing l-out-of-k functions. We propose an approximation of tensors representing noisy l-out-of-k functions by a sum of r tensors of rank one, where r is an upper bound of the symmetric border rank of the approximated tensor. We applied the suggested approximation to probabilistic inference in probabilistic graphical models. Numerical experiments reveal that we can get a gain in the order of two magnitudes but at the expense of a certain loss of precision. (en)
Title
  • Rank of tensors of l-out-of-k functions: an application in probabilistic inference
  • Rank of tensors of l-out-of-k functions: an application in probabilistic inference (en)
skos:prefLabel
  • Rank of tensors of l-out-of-k functions: an application in probabilistic inference
  • Rank of tensors of l-out-of-k functions: an application in probabilistic inference (en)
skos:notation
  • RIV/67985556:_____/11:00361630!RIV12-AV0-67985556
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1M0572), P(2C06019), P(GA201/09/1891), P(GEICC/08/E010), Z(AV0Z10750506)
http://linked.open...iv/cisloPeriodika
  • 3
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 225694
http://linked.open...ai/riv/idVysledku
  • RIV/67985556:_____/11:00361630
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Bayesian network; probabilistic inference; tensor rank (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • CZ - Česká republika
http://linked.open...ontrolniKodProRIV
  • [9315F5B0C1F8]
http://linked.open...i/riv/nazevZdroje
  • Kybernetika
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 47
http://linked.open...iv/tvurceVysledku
  • Vomlel, Jiří
http://linked.open...ain/vavai/riv/wos
  • 000293207900002
http://linked.open...n/vavai/riv/zamer
issn
  • 0023-5954
number of pages
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 100 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software