About: Advances in purification and separation of posttranslationally modified proteins     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Posttranslational modifications (PTMs) of proteins represent fascinating extensions of the dynamic complexity of living cells' proteomes. The results of enzymatically catalyzed or spontaneous chemical reactions, PTMs form a fourth tier in the gene -- transcript -- protein cascade, and contribute not only to proteins' biological functions, but also to challenges in their analysis. There have been tremendous advances in proteomics during the last decade. Identification and mapping of PTMs in proteins have improved dramatically, mainly due to constant increases in the sensitivity, speed, accuracy and resolution of mass spectrometry (MS). However, it is also becoming increasingly evident that simple gel-free shotgun MS profiling is unlikely to suffice for comprehensive detection and characterization of proteins and/or protein modifications present in low amounts. Here, we review current approaches for enriching and separating posttranslationally modified proteins, and their MS-independent detection. First, we discuss general approaches for proteome separation, fractionation and enrichment. We then consider the commonest forms of PTMs (phosphorylation, glycosylation and glycation, lipidation, methylation, acetylation, deamidation, ubiquitination and various redox modifications), and the best available methods for detecting and purifying proteins carrying these PTMs. This article is part of a Special Issue entitled: Protein Modifications.
  • Posttranslational modifications (PTMs) of proteins represent fascinating extensions of the dynamic complexity of living cells' proteomes. The results of enzymatically catalyzed or spontaneous chemical reactions, PTMs form a fourth tier in the gene -- transcript -- protein cascade, and contribute not only to proteins' biological functions, but also to challenges in their analysis. There have been tremendous advances in proteomics during the last decade. Identification and mapping of PTMs in proteins have improved dramatically, mainly due to constant increases in the sensitivity, speed, accuracy and resolution of mass spectrometry (MS). However, it is also becoming increasingly evident that simple gel-free shotgun MS profiling is unlikely to suffice for comprehensive detection and characterization of proteins and/or protein modifications present in low amounts. Here, we review current approaches for enriching and separating posttranslationally modified proteins, and their MS-independent detection. First, we discuss general approaches for proteome separation, fractionation and enrichment. We then consider the commonest forms of PTMs (phosphorylation, glycosylation and glycation, lipidation, methylation, acetylation, deamidation, ubiquitination and various redox modifications), and the best available methods for detecting and purifying proteins carrying these PTMs. This article is part of a Special Issue entitled: Protein Modifications. (en)
Title
  • Advances in purification and separation of posttranslationally modified proteins
  • Advances in purification and separation of posttranslationally modified proteins (en)
skos:prefLabel
  • Advances in purification and separation of posttranslationally modified proteins
  • Advances in purification and separation of posttranslationally modified proteins (en)
skos:notation
  • RIV/62156489:43210/13:00200669!RIV15-MSM-43210___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED1.1.00/02.0068), P(EE2.3.30.0017), P(GAP305/12/2144)
http://linked.open...iv/cisloPeriodika
  • 30 October 2013
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 59649
http://linked.open...ai/riv/idVysledku
  • RIV/62156489:43210/13:00200669
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • protein purification; protein modification; proteome (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [AFEAEE2A4C64]
http://linked.open...i/riv/nazevZdroje
  • Journal of Proteomics
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 92
http://linked.open...iv/tvurceVysledku
  • Černý, Martin
  • Brzobohatý, Břetislav
  • Černá, Hana
  • Skalák, Jan
http://linked.open...ain/vavai/riv/wos
  • 328518000002
issn
  • 1874-3919
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.jprot.2013.05.040
http://localhost/t...ganizacniJednotka
  • 43210
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software