About: Existence principle for higher-order nonlinear differential equations with state-dependent impulses via fixed point theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • The paper provides an existence principle for a general boundary value problem of the form sum_{j=0}^{n} a_j(t) u^(j)(t) = h(t,u(t),...,u^(n-1)(t)), a.e. t in [a,b] subset R, l_k(u,u',...,u^(n-1)) = c_k, k = 1,\ldots,n, with the state dependent impulses u^(j)(t+) - u^(j)(t-) = J_{ij}(u(t-),u'(t-),...,u^(n-1)(t-)), where the impulse points t are determined as solutions of the equations t = gamma_i(u(t-),u'(t-),...,u^(n-2)(t-)), i = 1,...,p, j=0,...,n-1. Here, n,p are positive integers, c_1,..., c_n reals, the functions a_j/a_n, j=0,...,n-1, are Lebesgue integrable on [a,b] and h/a_n satisfies the Caratheodory conditions on [a,b]\R^n$. The impulse functions J_{ij}, i=1,...,p, j=0,...,n-1, and the barrier functions gamma_i, i = 1,...,p, are continuous on R^n and R^{n-1}, respectively. The functionals l_k, k=1,...,n, are linear and bounded on the space of left-continuous regulated (i.e. having finite one-sided limits at each point) on [a,b] vector functions. Provided the data functions h and J_{ij} are bounded, transversality conditions which guarantee that each possible solution of the problem in a given region crosses each barrier gamma_i at the unique impulse point tau_i are presented, and consequently the existence of a solution to the problem is proved.
  • The paper provides an existence principle for a general boundary value problem of the form sum_{j=0}^{n} a_j(t) u^(j)(t) = h(t,u(t),...,u^(n-1)(t)), a.e. t in [a,b] subset R, l_k(u,u',...,u^(n-1)) = c_k, k = 1,\ldots,n, with the state dependent impulses u^(j)(t+) - u^(j)(t-) = J_{ij}(u(t-),u'(t-),...,u^(n-1)(t-)), where the impulse points t are determined as solutions of the equations t = gamma_i(u(t-),u'(t-),...,u^(n-2)(t-)), i = 1,...,p, j=0,...,n-1. Here, n,p are positive integers, c_1,..., c_n reals, the functions a_j/a_n, j=0,...,n-1, are Lebesgue integrable on [a,b] and h/a_n satisfies the Caratheodory conditions on [a,b]\R^n$. The impulse functions J_{ij}, i=1,...,p, j=0,...,n-1, and the barrier functions gamma_i, i = 1,...,p, are continuous on R^n and R^{n-1}, respectively. The functionals l_k, k=1,...,n, are linear and bounded on the space of left-continuous regulated (i.e. having finite one-sided limits at each point) on [a,b] vector functions. Provided the data functions h and J_{ij} are bounded, transversality conditions which guarantee that each possible solution of the problem in a given region crosses each barrier gamma_i at the unique impulse point tau_i are presented, and consequently the existence of a solution to the problem is proved. (en)
Title
  • Existence principle for higher-order nonlinear differential equations with state-dependent impulses via fixed point theorem
  • Existence principle for higher-order nonlinear differential equations with state-dependent impulses via fixed point theorem (en)
skos:prefLabel
  • Existence principle for higher-order nonlinear differential equations with state-dependent impulses via fixed point theorem
  • Existence principle for higher-order nonlinear differential equations with state-dependent impulses via fixed point theorem (en)
skos:notation
  • RIV/61989592:15310/14:33149125!RIV15-MSM-15310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S
http://linked.open...iv/cisloPeriodika
  • 118
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 15707
http://linked.open...ai/riv/idVysledku
  • RIV/61989592:15310/14:33149125
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • fixed point; transversality conditions; general linear boundary conditions; state-dependent impulses; nonlinear higher order ODE (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • DE - Spolková republika Německo
http://linked.open...ontrolniKodProRIV
  • [A8CBE7920BA5]
http://linked.open...i/riv/nazevZdroje
  • Boundary Value Problems
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 2014
http://linked.open...iv/tvurceVysledku
  • Rachůnková, Irena
  • Tomeček, Jan
http://linked.open...ain/vavai/riv/wos
  • 000347388800003
issn
  • 1687-2770
number of pages
http://bibframe.org/vocab/doi
  • 10.1186/1687-2770-2014-118
http://localhost/t...ganizacniJednotka
  • 15310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 106 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software