Attributes | Values |
---|
rdf:type
| |
Description
| - The solvability problem of one class of variational inequalities within framework of 1D linearized theory of coupled thermoelasticity has been discussed. A broad class of boundary conditions, including non-classical and their nonlinear variants has been introduced. From the mechanical point of view, problem can represent thermoelastic plate strip or beam bending. Weak formulation of the model problem, its interpretation in the form of classical formulation, as well as statements concerning existence and possible uniqueness of the problem solution has been given. General sketch of the basic ideas of the proof has been described: the problem can be split into two coupled problems representing stretching and bending effects. Some of bending problems can be further decomposed into three second order problems. Semicoercive cases in which conditions of solvability imply conditions of decomposition are also mentioned.
- The solvability problem of one class of variational inequalities within framework of 1D linearized theory of coupled thermoelasticity has been discussed. A broad class of boundary conditions, including non-classical and their nonlinear variants has been introduced. From the mechanical point of view, problem can represent thermoelastic plate strip or beam bending. Weak formulation of the model problem, its interpretation in the form of classical formulation, as well as statements concerning existence and possible uniqueness of the problem solution has been given. General sketch of the basic ideas of the proof has been described: the problem can be split into two coupled problems representing stretching and bending effects. Some of bending problems can be further decomposed into three second order problems. Semicoercive cases in which conditions of solvability imply conditions of decomposition are also mentioned. (en)
- V příspěvku je diskutována řešitelnost jedné třídy úloh majících tvar variačních rovnic a nerovnic, formulovaných v rámci linearizované teorie svázané termopružnosti. Je ukázána široká třída lineárních i nelineárních okrajových podmínek umožňujících dekompozici a zjednodušení výsledné formulace svázaných rovnic a nerovnic. Jsou uvedena příslušná tvrzení, náčrt postupu jejich důkazů s metodikou umožňující rozpad původní svázané úlohy na dvě úlohy reprezentující pouze osové a ohybové účinky, a také rozpad úlohy čtvrtého řádu na soustavu tří vzájemně nesvázaných úloh druhého řádu. V semikoercivních případech jsou uvedeny podmínky řešitelnosti i související podmínky dekompozice úlohy. (cs)
|
Title
| - Complete Class of Boundary Conditions Splitting Coupled Thermoelasticity Problems
- Complete Class of Boundary Conditions Splitting Coupled Thermoelasticity Problems (en)
- Řešitelnost jedné třídy úloh linearizované teorie svázané termopružnosti (cs)
|
skos:prefLabel
| - Complete Class of Boundary Conditions Splitting Coupled Thermoelasticity Problems
- Complete Class of Boundary Conditions Splitting Coupled Thermoelasticity Problems (en)
- Řešitelnost jedné třídy úloh linearizované teorie svázané termopružnosti (cs)
|
skos:notation
| - RIV/61989592:15310/05:00002136!RIV06-MSM-15310___
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/61989592:15310/05:00002136
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - coupled thermoelasticity; variational inequality; decomposition (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...v/mistoKonaniAkce
| |
http://linked.open...i/riv/mistoVydani
| |
http://linked.open...i/riv/nazevZdroje
| - Lecture Notes of IMAMM 2003
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...iv/tvurceVysledku
| |
http://linked.open...vavai/riv/typAkce
| |
http://linked.open.../riv/zahajeniAkce
| |
http://linked.open...n/vavai/riv/zamer
| |
number of pages
| |
http://purl.org/ne...btex#hasPublisher
| - Vysoká škola báňská - Technická univerzita Ostrava
|
https://schema.org/isbn
| |
http://localhost/t...ganizacniJednotka
| |