Attributes | Values |
---|
rdf:type
| |
Description
| - The aim of the work presented here is to reduce gas emissions in modern cities by creating a light infrastructure of WiFi intelligent spots informing drivers of customized, real-time routes to their destinations. The reduction of gas emissions is an important aspect of smart cities, since it directly affects the health of citizens as well as the environmental impact of road traffic. We have built a real scenario of the city of Malaga (Spain) by using OpenStreetMap (OSM) and the SUMO road traffic microsimulator, and solved it by using an efficient new Evolutionary Algorithm (EA). Thus, we are dealing with a real city (not just a roundabout, as found in the literature) and we can therefore measure the emissions of cars in movement according to traffic regulations (real human scenarios). Our results suggest an important reduction in gas emissions (10%) and travel times (9%) is possible when vehicles are rerouted by using the Red Swarm architecture. Our approach is even competitive with human expert's solutions to the same problem. 2013 Springer-Verlag.
- The aim of the work presented here is to reduce gas emissions in modern cities by creating a light infrastructure of WiFi intelligent spots informing drivers of customized, real-time routes to their destinations. The reduction of gas emissions is an important aspect of smart cities, since it directly affects the health of citizens as well as the environmental impact of road traffic. We have built a real scenario of the city of Malaga (Spain) by using OpenStreetMap (OSM) and the SUMO road traffic microsimulator, and solved it by using an efficient new Evolutionary Algorithm (EA). Thus, we are dealing with a real city (not just a roundabout, as found in the literature) and we can therefore measure the emissions of cars in movement according to traffic regulations (real human scenarios). Our results suggest an important reduction in gas emissions (10%) and travel times (9%) is possible when vehicles are rerouted by using the Red Swarm architecture. Our approach is even competitive with human expert's solutions to the same problem. 2013 Springer-Verlag. (en)
|
Title
| - Reducing gas emissions in smart cities by using the red swarm architecture
- Reducing gas emissions in smart cities by using the red swarm architecture (en)
|
skos:prefLabel
| - Reducing gas emissions in smart cities by using the red swarm architecture
- Reducing gas emissions in smart cities by using the red swarm architecture (en)
|
skos:notation
| - RIV/61989100:27240/14:86093032!RIV15-MSM-27240___
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/61989100:27240/14:86093032
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Smart Mobility; Smart City; Road Traffic; Gas Emissions; Evolutionary Algorithm; Application (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...v/mistoKonaniAkce
| |
http://linked.open...i/riv/mistoVydani
| |
http://linked.open...i/riv/nazevZdroje
| - Lecture Notes in Computer Science. Volume 8109
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...iv/tvurceVysledku
| - Alba, Enrique
- Stolfi, D. H.
|
http://linked.open...vavai/riv/typAkce
| |
http://linked.open.../riv/zahajeniAkce
| |
issn
| |
number of pages
| |
http://bibframe.org/vocab/doi
| - 10.1007/978-3-642-40643-0_30
|
http://purl.org/ne...btex#hasPublisher
| |
https://schema.org/isbn
| |
http://localhost/t...ganizacniJednotka
| |