About: Using Structural Information and Citation Evidence to Detect Significant Plagiarism Cases in Scientific Publications     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • In plagiarism detection (PD) systems, two important problems should be considered: the problem of retrieving candidate documents that are globally similar to a document q under investigation, and the problem of side-by-side comparison of q and its candidates to pinpoint plagiarized fragments in detail. In this article, the authors investigate the usage of structural information of scientific publications in both problems, and the consideration of citation evidence in the second problem. Three statistical measures namely Inverse Generic Class Frequency, Spread, and Depth are introduced to assign a degree of importance (i.e., weight) to structural components in scientific articles. A term-weighting scheme is adjusted to incorporate component-weight factors, which is used to improve the retrieval of potential sources of plagiarism. A plagiarism screening process is applied based on a measure of resemblance, in which component-weight factors are exploited to ignore less or nonsignificant plagiarism cases. Using the notion of citation evidence, parts with proper citation evidence are excluded, and remaining cases are suspected and used to calculate the similarity index. The authors compare their approach to two flat-based baselines, TF-IDF weighting with a Cosine coefficient, and shingling with a Jaccard coefficient. In both baselines, they use different comparison units with overlapping measures for plagiarism screening. They conducted extensive experiments using a dataset of 15,412 documents divided into 8,657 source publications and 6,755 suspicious queries, which included 18,147 plagiarism cases inserted automatically.
  • In plagiarism detection (PD) systems, two important problems should be considered: the problem of retrieving candidate documents that are globally similar to a document q under investigation, and the problem of side-by-side comparison of q and its candidates to pinpoint plagiarized fragments in detail. In this article, the authors investigate the usage of structural information of scientific publications in both problems, and the consideration of citation evidence in the second problem. Three statistical measures namely Inverse Generic Class Frequency, Spread, and Depth are introduced to assign a degree of importance (i.e., weight) to structural components in scientific articles. A term-weighting scheme is adjusted to incorporate component-weight factors, which is used to improve the retrieval of potential sources of plagiarism. A plagiarism screening process is applied based on a measure of resemblance, in which component-weight factors are exploited to ignore less or nonsignificant plagiarism cases. Using the notion of citation evidence, parts with proper citation evidence are excluded, and remaining cases are suspected and used to calculate the similarity index. The authors compare their approach to two flat-based baselines, TF-IDF weighting with a Cosine coefficient, and shingling with a Jaccard coefficient. In both baselines, they use different comparison units with overlapping measures for plagiarism screening. They conducted extensive experiments using a dataset of 15,412 documents divided into 8,657 source publications and 6,755 suspicious queries, which included 18,147 plagiarism cases inserted automatically. (en)
Title
  • Using Structural Information and Citation Evidence to Detect Significant Plagiarism Cases in Scientific Publications
  • Using Structural Information and Citation Evidence to Detect Significant Plagiarism Cases in Scientific Publications (en)
skos:prefLabel
  • Using Structural Information and Citation Evidence to Detect Significant Plagiarism Cases in Scientific Publications
  • Using Structural Information and Citation Evidence to Detect Significant Plagiarism Cases in Scientific Publications (en)
skos:notation
  • RIV/61989100:27240/12:86084522!RIV13-MSM-27240___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S
http://linked.open...iv/cisloPeriodika
  • 2
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
  • Abraham Padath, Ajith
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 176559
http://linked.open...ai/riv/idVysledku
  • RIV/61989100:27240/12:86084522
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • SEARCH; DIGITAL LIBRARIES; DOCUMENT STRUCTURE (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [5E887DDA8B31]
http://linked.open...i/riv/nazevZdroje
  • Journal of the American Society for Information Science and Technology
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 63
http://linked.open...iv/tvurceVysledku
  • Abraham Padath, Ajith
  • Alzahrani, Salha
  • Palade, Vasile
  • Salim, Naomie
http://linked.open...ain/vavai/riv/wos
  • 000302157900007
issn
  • 1532-2882
number of pages
http://bibframe.org/vocab/doi
  • 10.1002/asi.21651
http://localhost/t...ganizacniJednotka
  • 27240
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 107 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software