About: Clustering Variables by Classical Approaches and Neural Network Boolean Factor Analysis     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis [3], hierarchical clustering, and a linear factor analysis on the mushroom dataset [9]. In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis is its ability to reveal overlapping classes in the dataset. It is shown that the mushroom dataset provides a good demonstration of this advantage because it contains both disjunctive and overlapping classes.
  • In this paper, we compare three methods for grouping of binary variables: neural network Boolean factor analysis [3], hierarchical clustering, and a linear factor analysis on the mushroom dataset [9]. In contrast to the latter two traditional methods, the advantage of neural network Boolean factor analysis is its ability to reveal overlapping classes in the dataset. It is shown that the mushroom dataset provides a good demonstration of this advantage because it contains both disjunctive and overlapping classes. (en)
Title
  • Clustering Variables by Classical Approaches and Neural Network Boolean Factor Analysis
  • Clustering Variables by Classical Approaches and Neural Network Boolean Factor Analysis (en)
skos:prefLabel
  • Clustering Variables by Classical Approaches and Neural Network Boolean Factor Analysis
  • Clustering Variables by Classical Approaches and Neural Network Boolean Factor Analysis (en)
skos:notation
  • RIV/61989100:27240/08:86075668!RIV11-AV0-27240___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1ET100300414), P(1M0567), Z(AV0Z10300504)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 360193
http://linked.open...ai/riv/idVysledku
  • RIV/61989100:27240/08:86075668
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Analysis; Factor; Boolean; Network; Neural; and; Approaches; Classical; Variables; Clustering (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [75045ABFA84C]
http://linked.open...v/mistoKonaniAkce
  • Čína
http://linked.open...i/riv/mistoVydani
  • NEW YORK
http://linked.open...i/riv/nazevZdroje
  • IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Húsek, Dušan
  • Snášel, Václav
  • Řezánková, Hana
  • Frolov, Alexander
  • Polyakov, Pavel
http://linked.open...vavai/riv/typAkce
http://linked.open...ain/vavai/riv/wos
  • 000263827202095
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA
https://schema.org/isbn
  • 978-1-4244-1820-6
http://localhost/t...ganizacniJednotka
  • 27240
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 106 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software