Attributes | Values |
---|
rdf:type
| |
Description
| - Non-linear reduced MHD modelling of the toroidally rotating plasma response to resonant magnetic perturbations (RMPs) is presented for DIII-D and ITER-like typical parameter and RMP coils. The non-linear cylindrical reduced MHD code was adapted to take into account toroidal rotation and plasma braking mechanisms such as resonant one and the neoclassical toroidal viscosity (NTV) calculated for low collisionality regimes ('1/ν' and 'ν'). Counter toroidal rotation by NTV is predicted for ITER with the proposed RMP coils in 1/ν-limit. Resonant braking is localized near resonant surfaces and is weak compared with NTV in the 1/ν regime for typical DIII-D and ITER parameters. Toroidal rotation leads to the effective screening of RMPs that is larger for stronger rotation and lower resistivity, resulting mainly in central islands screening. Non-resonant helical harmonics in RMP spectrum are not influenced by plasma rotation, and hence penetrate and are important in NTV mechanism.
- Non-linear reduced MHD modelling of the toroidally rotating plasma response to resonant magnetic perturbations (RMPs) is presented for DIII-D and ITER-like typical parameter and RMP coils. The non-linear cylindrical reduced MHD code was adapted to take into account toroidal rotation and plasma braking mechanisms such as resonant one and the neoclassical toroidal viscosity (NTV) calculated for low collisionality regimes ('1/ν' and 'ν'). Counter toroidal rotation by NTV is predicted for ITER with the proposed RMP coils in 1/ν-limit. Resonant braking is localized near resonant surfaces and is weak compared with NTV in the 1/ν regime for typical DIII-D and ITER parameters. Toroidal rotation leads to the effective screening of RMPs that is larger for stronger rotation and lower resistivity, resulting mainly in central islands screening. Non-resonant helical harmonics in RMP spectrum are not influenced by plasma rotation, and hence penetrate and are important in NTV mechanism. (en)
|
Title
| - Physics of Penetration of Resonant Magnetic Perturbations Used for Type I Edge Localized Modes Suppression in Tokamaks
- Physics of Penetration of Resonant Magnetic Perturbations Used for Type I Edge Localized Modes Suppression in Tokamaks (en)
|
skos:prefLabel
| - Physics of Penetration of Resonant Magnetic Perturbations Used for Type I Edge Localized Modes Suppression in Tokamaks
- Physics of Penetration of Resonant Magnetic Perturbations Used for Type I Edge Localized Modes Suppression in Tokamaks (en)
|
skos:notation
| - RIV/61389021:_____/09:00333528!RIV10-AV0-61389021
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/61389021:_____/09:00333528
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - resonant magnetic perturbations; ELM control; neoclassical toroidal viscosity; mode penetration (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| |
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Cahyna, Pavel
- Nardon, E.
- Evans, T.
- Bécoulet, M.
- Garbet, X.
- Schaffer, M.
- Cole, A.
- Park, J.-K.
- Huysmans, G.
- Garofalo, A.
- Howell, D.
- Shaing, K.
|
http://linked.open...ain/vavai/riv/wos
| |
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |