About: Noninvasive optical imaging of nanomedicine biodistribution     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Nanomedicines are sub-micrometer-sized carrier materials designed to improve the biodistribution of i.v. administered (chemo-) therapeutic agents. In recent years, ever more efforts in the nanomedicine field have employed optical imaging (OI) techniques to monitor biodistribution and target site accumulation. Thus far, however, the longitudinal assessment of nanomedicine biodistribution using OI has been impossible, due to limited light penetration (in the case of 2D fluorescence reflectance imaging; FRI) and to the inability to accurately allocate fluorescent signals to nonsuperficial organs (in the case of 3D fluorescence molecular tomography; FMT). Using a combination of high-resolution microcomputed tomography (μCT) and FMT, we have here set out to establish a hybrid imaging protocol for noninvasively visualizing and quantifying the accumulation of near-infrared fluorophore-labeled nanomedicines in tissues other than superficial tumors. To this end, HPMA-based polymeric drug carriers were labeled with Dy750, their biodistribution and tumor accumulation were analyzed using FMT, and the resulting data sets were fused with anatomical μCT data sets in which several different physiologically relevant organs were presegmented. The robustness of 3D organ segmentation was validated, and the results obtained using 3D CT-FMT were compared to those obtained upon standard 3D FMT and 2D FRI. Our findings convincingly demonstrate that combining anatomical μCT with molecular FMT facilitates the noninvasive assessment of nanomedicine biodistribution.
  • Nanomedicines are sub-micrometer-sized carrier materials designed to improve the biodistribution of i.v. administered (chemo-) therapeutic agents. In recent years, ever more efforts in the nanomedicine field have employed optical imaging (OI) techniques to monitor biodistribution and target site accumulation. Thus far, however, the longitudinal assessment of nanomedicine biodistribution using OI has been impossible, due to limited light penetration (in the case of 2D fluorescence reflectance imaging; FRI) and to the inability to accurately allocate fluorescent signals to nonsuperficial organs (in the case of 3D fluorescence molecular tomography; FMT). Using a combination of high-resolution microcomputed tomography (μCT) and FMT, we have here set out to establish a hybrid imaging protocol for noninvasively visualizing and quantifying the accumulation of near-infrared fluorophore-labeled nanomedicines in tissues other than superficial tumors. To this end, HPMA-based polymeric drug carriers were labeled with Dy750, their biodistribution and tumor accumulation were analyzed using FMT, and the resulting data sets were fused with anatomical μCT data sets in which several different physiologically relevant organs were presegmented. The robustness of 3D organ segmentation was validated, and the results obtained using 3D CT-FMT were compared to those obtained upon standard 3D FMT and 2D FRI. Our findings convincingly demonstrate that combining anatomical μCT with molecular FMT facilitates the noninvasive assessment of nanomedicine biodistribution. (en)
Title
  • Noninvasive optical imaging of nanomedicine biodistribution
  • Noninvasive optical imaging of nanomedicine biodistribution (en)
skos:prefLabel
  • Noninvasive optical imaging of nanomedicine biodistribution
  • Noninvasive optical imaging of nanomedicine biodistribution (en)
skos:notation
  • RIV/61389013:_____/13:00388377!RIV13-AV0-61389013
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GAP301/11/0325), Z(AV0Z40500505)
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 91946
http://linked.open...ai/riv/idVysledku
  • RIV/61389013:_____/13:00388377
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • nanomedicine; drug targeting; biodistribution (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [671828B42F87]
http://linked.open...i/riv/nazevZdroje
  • ACS Nano
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 7
http://linked.open...iv/tvurceVysledku
  • Etrych, Tomáš
  • Pechar, Michal
  • Pola, Robert
  • Ulbrich, Karel
  • Lammers, T.
  • Kiessling, F.
  • Kunjachan, S.
  • Storm, G.
  • Theek, B.
  • Gremse, F.
  • Koczera, P.
http://linked.open...ain/vavai/riv/wos
  • 000314082800029
http://linked.open...n/vavai/riv/zamer
issn
  • 1936-0851
number of pages
http://bibframe.org/vocab/doi
  • 10.1021/nn303955n
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software