About: Cropping enhances mycorrhizal benefits to maize in a tropical soil     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Crop production in subsistence agriculture in tropical Africa is still sustained mainly by short-to mediumterm fallows to recuperate natural fertility of the soils. Microbes play a pivotal role both in the process of soil fertility restoration and in nutrient acquisition by the crops. Here we ask the question how the duration of fallow affects the composition of indigenous arbuscular mycorrhizal fungal (AMF) communities and their contribution to maize nutrition and growth, in acidic, low P soils of southern Cameroon. This question has been addressed in a bioassay where soils collected from continuously cropped fields, short-term fallows dominated by Chromolaena odorata and long-term fallows (secondary forests) have been sterilized and back- and cross inoculated with living soils from the different land-use systems. Particular microbes larger than the pore size of the filter paper (mainly the fungi including the AMF) contained in the cropped and short-fallowed soils caused greater growth and P uptake stimulations to the maize as compared to the forest soil. By using molecular profiling, we demonstrated a shift in the composition of AMF communities along a gradient of fallow duration, changing from dominance by Rhizophagus in the forest fallow soil, to dominance by Claroideoglomus under cropland. Our results contradict the hypothesis that deterioration of quality of root symbiotic communities would be responsible for a rapid yield decline following deforestation, and indicate a positive feedback of cropping on mycorrhizal functioning under conditions of shifting agriculture in tropical Africa
  • Crop production in subsistence agriculture in tropical Africa is still sustained mainly by short-to mediumterm fallows to recuperate natural fertility of the soils. Microbes play a pivotal role both in the process of soil fertility restoration and in nutrient acquisition by the crops. Here we ask the question how the duration of fallow affects the composition of indigenous arbuscular mycorrhizal fungal (AMF) communities and their contribution to maize nutrition and growth, in acidic, low P soils of southern Cameroon. This question has been addressed in a bioassay where soils collected from continuously cropped fields, short-term fallows dominated by Chromolaena odorata and long-term fallows (secondary forests) have been sterilized and back- and cross inoculated with living soils from the different land-use systems. Particular microbes larger than the pore size of the filter paper (mainly the fungi including the AMF) contained in the cropped and short-fallowed soils caused greater growth and P uptake stimulations to the maize as compared to the forest soil. By using molecular profiling, we demonstrated a shift in the composition of AMF communities along a gradient of fallow duration, changing from dominance by Rhizophagus in the forest fallow soil, to dominance by Claroideoglomus under cropland. Our results contradict the hypothesis that deterioration of quality of root symbiotic communities would be responsible for a rapid yield decline following deforestation, and indicate a positive feedback of cropping on mycorrhizal functioning under conditions of shifting agriculture in tropical Africa (en)
Title
  • Cropping enhances mycorrhizal benefits to maize in a tropical soil
  • Cropping enhances mycorrhizal benefits to maize in a tropical soil (en)
skos:prefLabel
  • Cropping enhances mycorrhizal benefits to maize in a tropical soil
  • Cropping enhances mycorrhizal benefits to maize in a tropical soil (en)
skos:notation
  • RIV/61388971:_____/14:00436193!RIV15-GA0-61388971
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GAP504/12/1665), P(LK11224)
http://linked.open...iv/cisloPeriodika
  • 2014
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 9234
http://linked.open...ai/riv/idVysledku
  • RIV/61388971:_____/14:00436193
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • tropical soil; mycorrhizal benefits; southern Cameroon (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [459CE58BA9F3]
http://linked.open...i/riv/nazevZdroje
  • Soil Biology and Biochemistry
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 79
http://linked.open...iv/tvurceVysledku
  • Jansa, Jan
  • Frossard, E.
  • Jemo, M.
  • Souleymanou, A.
http://linked.open...ain/vavai/riv/wos
  • 000344428600015
issn
  • 0038-0717
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.soilbio.2014.09.014
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software