About: Specific potassium ion interactions facilitate homocysteine binding to betaine-homocysteine S-methyltransferase     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent methyltransferase that uses betaine as the methyl donor for the remethylation of homocysteine to form methionine. This reaction supports S-adenosylmethionine biosynthesis, which is required for hundreds of methylation reactions in humans. Herein we report that BHMT is activated by potassium ions with an apparent K-M for K+ of about 100 mu M. The presence of potassium ions lowers the apparent K-M of the enzyme for homocysteine, but it does not affect the apparent K-M for betaine or the apparent k(cat) for either substrate. We employed molecular dynamics (MD) simulations to theoretically predict and protein crystallography to experimentally localize the binding site(s) for potassium ion(s). Simulations predicted that K+ ion would interact with residues Asp26 and/or Glu159. Our crystal structure of BHMT bound to homocysteine confirms these sites of interaction and reveals further contacts between K+ ion and BHMT residues Gly27, Gln72, Gln247, and Gly298. The potassium binding residues in BHMT partially overlap with the previously identified DGG (Asp26-Gly27-Gly28) fingerprint in the Pfam 02574 group of methyltransferases. Subsequent biochemical characterization of several site-specific BHMT mutants confirmed the results obtained by the MD simulations and crystallographic data. Together, the data herein indicate that the role of potassium ions in BHMT is structural and that potassium ion facilitates the specific binding of homocysteine to the active site of the enzyme.
  • Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent methyltransferase that uses betaine as the methyl donor for the remethylation of homocysteine to form methionine. This reaction supports S-adenosylmethionine biosynthesis, which is required for hundreds of methylation reactions in humans. Herein we report that BHMT is activated by potassium ions with an apparent K-M for K+ of about 100 mu M. The presence of potassium ions lowers the apparent K-M of the enzyme for homocysteine, but it does not affect the apparent K-M for betaine or the apparent k(cat) for either substrate. We employed molecular dynamics (MD) simulations to theoretically predict and protein crystallography to experimentally localize the binding site(s) for potassium ion(s). Simulations predicted that K+ ion would interact with residues Asp26 and/or Glu159. Our crystal structure of BHMT bound to homocysteine confirms these sites of interaction and reveals further contacts between K+ ion and BHMT residues Gly27, Gln72, Gln247, and Gly298. The potassium binding residues in BHMT partially overlap with the previously identified DGG (Asp26-Gly27-Gly28) fingerprint in the Pfam 02574 group of methyltransferases. Subsequent biochemical characterization of several site-specific BHMT mutants confirmed the results obtained by the MD simulations and crystallographic data. Together, the data herein indicate that the role of potassium ions in BHMT is structural and that potassium ion facilitates the specific binding of homocysteine to the active site of the enzyme. (en)
Title
  • Specific potassium ion interactions facilitate homocysteine binding to betaine-homocysteine S-methyltransferase
  • Specific potassium ion interactions facilitate homocysteine binding to betaine-homocysteine S-methyltransferase (en)
skos:prefLabel
  • Specific potassium ion interactions facilitate homocysteine binding to betaine-homocysteine S-methyltransferase
  • Specific potassium ion interactions facilitate homocysteine binding to betaine-homocysteine S-methyltransferase (en)
skos:notation
  • RIV/61388963:_____/14:00435073!RIV15-GA0-61388963
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GAP207/10/1277), P(GBP208/12/G016)
http://linked.open...iv/cisloPeriodika
  • 10
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 46479
http://linked.open...ai/riv/idVysledku
  • RIV/61388963:_____/14:00435073
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • BHMT; homocysteine; potassium; crystal structure; molecular dynamics; simulations; enzyme kinetics (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [98A464D345CE]
http://linked.open...i/riv/nazevZdroje
  • Proteins-Structure, Function and Bioinformatics
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 82
http://linked.open...iv/tvurceVysledku
  • Jungwirth, Pavel
  • Jiráček, Jiří
  • Garrow, T. A.
  • Mládková, Jana
  • Hladílková, Jana
  • Yamada, K.
  • Diamond, C. E.
  • Koutmos, M.
  • Tryon, K.
http://linked.open...ain/vavai/riv/wos
  • 000342849400022
issn
  • 0887-3585
number of pages
http://bibframe.org/vocab/doi
  • 10.1002/prot.24619
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 9 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software