AttributesValues
rdf:type
Description
  • We present a novel force field model of 2,2,2-trifluoroethanol (TFE) based on the generalized AMBER force field. The model was exhaustively parametrized to reproduce liquid-state properties of pure TFE, namely, density, enthalpy of vaporization, self-diffusion coefficient, and population of trans and gauche conformers. The model predicts excellently other liquid-state properties such as shear viscosity, thermal expansion coefficient, and isotropic compressibility. The resulting model describes unexpectedly well the state equation of the liquid region in the range of 100 K and 10 MPa. More importantly, the proposed TFE model was optimized for use in combination with the TIP4P/Ew and TIP4P/2005 water models. It does not manifest excessive aggregation, which is known for other models, and therefore, it is supposed to more realistically describe the behavior of TFE/water mixtures. This was demonstrated by means of the Kirkwood-Buff theory of solutions and reasonable agreement with experimental data. We explored a considerable part of the parameter space and systematically tested individual combinations of parameters for performance in combination with the TIP4P/Ew and TIP4P/2005 water models. We observed ambiguity in parameters describing pure liquid TFE; however, most of them failed for TFE/water mixtures. We clearly demonstrated the necessity for balanced TFE-TFE, TFE-water, and water-water interactions which can be acquired only by employing implicit polarization correction in the course of parametrization.
  • We present a novel force field model of 2,2,2-trifluoroethanol (TFE) based on the generalized AMBER force field. The model was exhaustively parametrized to reproduce liquid-state properties of pure TFE, namely, density, enthalpy of vaporization, self-diffusion coefficient, and population of trans and gauche conformers. The model predicts excellently other liquid-state properties such as shear viscosity, thermal expansion coefficient, and isotropic compressibility. The resulting model describes unexpectedly well the state equation of the liquid region in the range of 100 K and 10 MPa. More importantly, the proposed TFE model was optimized for use in combination with the TIP4P/Ew and TIP4P/2005 water models. It does not manifest excessive aggregation, which is known for other models, and therefore, it is supposed to more realistically describe the behavior of TFE/water mixtures. This was demonstrated by means of the Kirkwood-Buff theory of solutions and reasonable agreement with experimental data. We explored a considerable part of the parameter space and systematically tested individual combinations of parameters for performance in combination with the TIP4P/Ew and TIP4P/2005 water models. We observed ambiguity in parameters describing pure liquid TFE; however, most of them failed for TFE/water mixtures. We clearly demonstrated the necessity for balanced TFE-TFE, TFE-water, and water-water interactions which can be acquired only by employing implicit polarization correction in the course of parametrization. (en)
Title
  • Parametrization of 2,2,2-Trifluoroethanol Based on the Generalized Amber Force Field Provides Realistic Agreement between Experimental and Calculated Properties of Pure Liquid as Well as Water-Mixed Solutions
  • Parametrization of 2,2,2-Trifluoroethanol Based on the Generalized Amber Force Field Provides Realistic Agreement between Experimental and Calculated Properties of Pure Liquid as Well as Water-Mixed Solutions (en)
skos:prefLabel
  • Parametrization of 2,2,2-Trifluoroethanol Based on the Generalized Amber Force Field Provides Realistic Agreement between Experimental and Calculated Properties of Pure Liquid as Well as Water-Mixed Solutions
  • Parametrization of 2,2,2-Trifluoroethanol Based on the Generalized Amber Force Field Provides Realistic Agreement between Experimental and Calculated Properties of Pure Liquid as Well as Water-Mixed Solutions (en)
skos:notation
  • RIV/61388963:_____/14:00432453!RIV15-AV0-61388963
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(LH11020)
http://linked.open...iv/cisloPeriodika
  • 35
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 35742
http://linked.open...ai/riv/idVysledku
  • RIV/61388963:_____/14:00432453
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • molecular dynamics simulations; alpha-helical structure; der Waals interactions (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [5C0A592AD5E3]
http://linked.open...i/riv/nazevZdroje
  • Journal of Physical Chemistry B
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 118
http://linked.open...iv/tvurceVysledku
  • Vondrášek, Jiří
  • Vymětal, Jiří
http://linked.open...ain/vavai/riv/wos
  • 000341337500008
issn
  • 1520-6106
number of pages
http://bibframe.org/vocab/doi
  • 10.1021/jp505861b
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 32 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software