About: Formulation design space analysis for drug release from swelling polymer tablets     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • A model is presented which can be used to simulate polymer swelling and drug release from tablets using a combination of the Discrete Element Method (DEM) and solving mass transfer over an unstructured grid formed by the DEM elements. This work extends a recently developed single-component swelling and dissolution model by incorporating an extra component (drug) that can be either homogeneously or heterogeneously dispersed within the tablet. Parametric studies were conducted on some of the key parameters which affect drug release, namely the drug distribution, maximum swelling ratio of the polymer and the drug-polymer diffusivity dependence. The drug heterogeneity study showed that burst release (i.e. dose-dumping) increased as drug loading increased since the polymer could not form a gel layer to surround the tablet but the time taken for 99% drug release was not significantly different when compared to the homogeneous case. The maximum swelling ratio study showed that drug release could be limited either by its diffusion through the dense polymer network or the thickness of the gel layer. It was shown that a minimum release time exists where the drug diffusivity and gel layer thickness would give fast drug release. The drug-polymer diffusivity study showed that drug release could become closer to zero-order the more dependent it was on polymer concentration (as the drug would diffuse very slowly until the polymer was very dilute) compared to more Fickian release if the drug's diffusion coefficient was not as dependent on polymer concentration. Simulated drug release was compared against experiments where tablets containing 10% or 60% w/w nicotinamide and HPMC k100LV were dissolved and imaged using a combination of Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopic imaging and downstream monochromatic UV/Visible detection.
  • A model is presented which can be used to simulate polymer swelling and drug release from tablets using a combination of the Discrete Element Method (DEM) and solving mass transfer over an unstructured grid formed by the DEM elements. This work extends a recently developed single-component swelling and dissolution model by incorporating an extra component (drug) that can be either homogeneously or heterogeneously dispersed within the tablet. Parametric studies were conducted on some of the key parameters which affect drug release, namely the drug distribution, maximum swelling ratio of the polymer and the drug-polymer diffusivity dependence. The drug heterogeneity study showed that burst release (i.e. dose-dumping) increased as drug loading increased since the polymer could not form a gel layer to surround the tablet but the time taken for 99% drug release was not significantly different when compared to the homogeneous case. The maximum swelling ratio study showed that drug release could be limited either by its diffusion through the dense polymer network or the thickness of the gel layer. It was shown that a minimum release time exists where the drug diffusivity and gel layer thickness would give fast drug release. The drug-polymer diffusivity study showed that drug release could become closer to zero-order the more dependent it was on polymer concentration (as the drug would diffuse very slowly until the polymer was very dilute) compared to more Fickian release if the drug's diffusion coefficient was not as dependent on polymer concentration. Simulated drug release was compared against experiments where tablets containing 10% or 60% w/w nicotinamide and HPMC k100LV were dissolved and imaged using a combination of Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopic imaging and downstream monochromatic UV/Visible detection. (en)
Title
  • Formulation design space analysis for drug release from swelling polymer tablets
  • Formulation design space analysis for drug release from swelling polymer tablets (en)
skos:prefLabel
  • Formulation design space analysis for drug release from swelling polymer tablets
  • Formulation design space analysis for drug release from swelling polymer tablets (en)
skos:notation
  • RIV/60461373:22340/13:43895522!RIV14-MSM-22340___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • R
http://linked.open...iv/cisloPeriodika
  • February 2013
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 75556
http://linked.open...ai/riv/idVysledku
  • RIV/60461373:22340/13:43895522
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Drug release; Mathematical modelling; FT-IR spectroscopic imaging; Tablet dissolution; DEM (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • CH - Švýcarská konfederace
http://linked.open...ontrolniKodProRIV
  • [A319502410A8]
http://linked.open...i/riv/nazevZdroje
  • Powder Technology
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 236
http://linked.open...iv/tvurceVysledku
  • Štěpánek, František
  • Kazarian, Sergei
  • Kimber, James
http://linked.open...ain/vavai/riv/wos
  • 000316516300022
issn
  • 0032-5910
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.powtec.2012.02.027
http://localhost/t...ganizacniJednotka
  • 22340
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software