About: Surface characterization of plasma treated polymers for applications as biocompatible carriers     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The objective of this work was to determine surface properties of polymer surfaces after plasma treatment with the aim of further cytocompatibility tests. Examined polymers were poly(ethyleneterephthalate) (PET), high-density polyethylene (HDPE), poly(tetrafluoro-ethylene) (PTFE) and poly(L-lactic acid) (PLLA). Goniometry has shown that the plasma treatment was immediately followed by a sharp decrease of contact angle of the surface. In the course of ageing the contact angle increased due to the reorientation of polar groups into the surface layer of polymer. Ablation of polymer surfaces was observed during the degradation. Decrease of weight of polymer samples was measured by gravimetry. Surface morphology and roughness was studied by atomic force microscopy (AFM). The PLLA samples exhibited saturation of wettability (aged surface) after approximately 100 hours, while the PET and PTFE achieved constant values of contact angle after 336 hours. Irradiation by plasma leads to polymer ablation, the highest mass loss being observed for PLLA. The changes in the surface roughness and morphology were observed, a lamellar structure being induced on PTFE. Selected polymer samples were seeded with VSMC (vascular smooth muscle cells) and the adhesion and proliferation of cells was studied. It was proved that certain combination of input treatment parameters led to improvement of polymer cytocompatibility. The plasma exposure was confirmed to significantly improve the PTFE biocompatibility.
  • The objective of this work was to determine surface properties of polymer surfaces after plasma treatment with the aim of further cytocompatibility tests. Examined polymers were poly(ethyleneterephthalate) (PET), high-density polyethylene (HDPE), poly(tetrafluoro-ethylene) (PTFE) and poly(L-lactic acid) (PLLA). Goniometry has shown that the plasma treatment was immediately followed by a sharp decrease of contact angle of the surface. In the course of ageing the contact angle increased due to the reorientation of polar groups into the surface layer of polymer. Ablation of polymer surfaces was observed during the degradation. Decrease of weight of polymer samples was measured by gravimetry. Surface morphology and roughness was studied by atomic force microscopy (AFM). The PLLA samples exhibited saturation of wettability (aged surface) after approximately 100 hours, while the PET and PTFE achieved constant values of contact angle after 336 hours. Irradiation by plasma leads to polymer ablation, the highest mass loss being observed for PLLA. The changes in the surface roughness and morphology were observed, a lamellar structure being induced on PTFE. Selected polymer samples were seeded with VSMC (vascular smooth muscle cells) and the adhesion and proliferation of cells was studied. It was proved that certain combination of input treatment parameters led to improvement of polymer cytocompatibility. The plasma exposure was confirmed to significantly improve the PTFE biocompatibility. (en)
Title
  • Surface characterization of plasma treated polymers for applications as biocompatible carriers
  • Surface characterization of plasma treated polymers for applications as biocompatible carriers (en)
skos:prefLabel
  • Surface characterization of plasma treated polymers for applications as biocompatible carriers
  • Surface characterization of plasma treated polymers for applications as biocompatible carriers (en)
skos:notation
  • RIV/60461373:22310/13:43896500!RIV14-GA0-22310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GBP108/12/G108)
http://linked.open...iv/cisloPeriodika
  • 6
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 109067
http://linked.open...ai/riv/idVysledku
  • RIV/60461373:22310/13:43896500
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • biocompatibility; surface morphology; plasma processing; biopolymers; nanomaterials (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • HU - Maďarsko
http://linked.open...ontrolniKodProRIV
  • [AAA62366F699]
http://linked.open...i/riv/nazevZdroje
  • EXPRESS POLYMER LETTERS
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 7
http://linked.open...iv/tvurceVysledku
  • Bačáková, Lucie
  • Slepička, Petr
  • Švorčík, Václav
  • Slepičková Kasálková, Nikola
  • Stránská, Eliška
http://linked.open...ain/vavai/riv/wos
  • 000317109800006
issn
  • 1788-618X
number of pages
http://bibframe.org/vocab/doi
  • 10.3144/expresspolymlett.2013.50
http://localhost/t...ganizacniJednotka
  • 22310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software