About: Graphene Sheet Orientation of Parent Material Exhibits Dramatic Influence on Graphene Properties     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The production of graphene from various sources has garnered much attention in recent years with the development of methods that range from bottom-up to top-down approaches. The top-down approach often requires thermal treatment to obtain a few-layered and lowly oxygenated graphene sheets. Herein, we demonstrate the production of graphene through oxidation and thermal-reduction/exfoliation of two sources of differently orientated graphene sheets: multiwalled carbon nanotubes (MWCNTs) and stacked graphene nanofibers (SGNFs). These two carbon-nanofiber-like materials have similar axial (length: 59 mu m) and lateral dimensions (diameter: about 100 nm). We demonstrate that, whereas SGNFs exfoliate along the lateral plane between adjacent graphene sheets, carbon nanotubes exfoliate along its longitudinal axis and leads to opening of the carbon nanotubes owing to the built-in strain. Subsequent thermal exfoliation leads to graphene materials that have, despite the fact that their parent materials exhibited similar dimensions, dramatically different proportions and, consequently, materials properties. Graphene that was prepared from MWCNTs exhibited dimensions of about 5000 x 300 nm, whereas graphene that was prepared from SGNFs exhibited sheets with dimensions of about 50 x 50 nm. The density of defects and oxygen-containing groups on these materials are dramatically different, as are the electrochemical properties. We performed morphological, structural, and electrochemical characterization based on TEM, SEM, high-resolution X-ray photoelectron spectroscopy, Raman spectroscopy, and cyclic voltammetry (CV) analysis on the stepwise conversion of the target source into the exfoliated graphene. Morphological and structural characterization indicated the successful chemical and thermal treatment of the materials. Our findings have shown that the orientation of the graphene sheets in starting materials has a dramatic influence on their chemical, material, and electroch
  • The production of graphene from various sources has garnered much attention in recent years with the development of methods that range from bottom-up to top-down approaches. The top-down approach often requires thermal treatment to obtain a few-layered and lowly oxygenated graphene sheets. Herein, we demonstrate the production of graphene through oxidation and thermal-reduction/exfoliation of two sources of differently orientated graphene sheets: multiwalled carbon nanotubes (MWCNTs) and stacked graphene nanofibers (SGNFs). These two carbon-nanofiber-like materials have similar axial (length: 59 mu m) and lateral dimensions (diameter: about 100 nm). We demonstrate that, whereas SGNFs exfoliate along the lateral plane between adjacent graphene sheets, carbon nanotubes exfoliate along its longitudinal axis and leads to opening of the carbon nanotubes owing to the built-in strain. Subsequent thermal exfoliation leads to graphene materials that have, despite the fact that their parent materials exhibited similar dimensions, dramatically different proportions and, consequently, materials properties. Graphene that was prepared from MWCNTs exhibited dimensions of about 5000 x 300 nm, whereas graphene that was prepared from SGNFs exhibited sheets with dimensions of about 50 x 50 nm. The density of defects and oxygen-containing groups on these materials are dramatically different, as are the electrochemical properties. We performed morphological, structural, and electrochemical characterization based on TEM, SEM, high-resolution X-ray photoelectron spectroscopy, Raman spectroscopy, and cyclic voltammetry (CV) analysis on the stepwise conversion of the target source into the exfoliated graphene. Morphological and structural characterization indicated the successful chemical and thermal treatment of the materials. Our findings have shown that the orientation of the graphene sheets in starting materials has a dramatic influence on their chemical, material, and electroch (en)
Title
  • Graphene Sheet Orientation of Parent Material Exhibits Dramatic Influence on Graphene Properties
  • Graphene Sheet Orientation of Parent Material Exhibits Dramatic Influence on Graphene Properties (en)
skos:prefLabel
  • Graphene Sheet Orientation of Parent Material Exhibits Dramatic Influence on Graphene Properties
  • Graphene Sheet Orientation of Parent Material Exhibits Dramatic Influence on Graphene Properties (en)
skos:notation
  • RIV/60461373:22310/12:43893556!RIV13-MSM-22310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S, Z(MSM6046137302)
http://linked.open...iv/cisloPeriodika
  • 10
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 138403
http://linked.open...ai/riv/idVysledku
  • RIV/60461373:22310/12:43893556
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • sheet orientation; nanotubes; nanofibers; graphene; electrochemistry (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • DE - Spolková republika Německo
http://linked.open...ontrolniKodProRIV
  • [85A10D46AFD8]
http://linked.open...i/riv/nazevZdroje
  • Chemistry - An Asian Journal
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 7
http://linked.open...iv/tvurceVysledku
  • Pumera, Martin
  • Sofer, Zdeněk
  • Chua, Chung Kiang
http://linked.open...ain/vavai/riv/wos
  • 000308877400027
http://linked.open...n/vavai/riv/zamer
issn
  • 1861-4728
number of pages
http://bibframe.org/vocab/doi
  • 10.1002/asia.201200409
http://localhost/t...ganizacniJednotka
  • 22310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software