About: Population Bottlenecks during the Infectious Cycle of the Lyme Disease Spirochete Borrelia burgdorferi     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Borrelia burgdorferi is a zoonotic pathogen whose maintenance in nature depends upon an infectious cycle that alternates between a tick vector and mammalian hosts. Lyme disease in humans results from transmission of B. burgdorferi by the bite of an infected tick. The population dynamics of B. burgdorferi throughout its natural infectious cycle are not well understood. We addressed this topic by assessing the colonization, dissemination and persistence of B. burgdorferi within and between the disparate mammalian and tick environments. To follow bacterial populations during infection, we generated seven isogenic but distinguishable B. burgdorferi clones, each with a unique sequence tag. These tags resulted in no phenotypic changes relative to wild type organisms, yet permitted highly sensitive and specific detection of individual clones by PCR. We followed the composition of the spirochete population throughout an experimental infectious cycle that was initiated with a mixed inoculum of all clones. We observed heterogeneity in the spirochete population disseminating within mice at very early time points, but all clones displayed the ability to colonize most mouse tissues by 3 weeks of infection. The complexity of clones subsequently declined as murine infection persisted. Larval ticks typically acquired a reduced and variable number of clones relative to what was present in infected mice at the time of tick feeding, and maintained the same spirochete population through the molt to nymphs. However, only a random subset of infectious spirochetes was transmitted to naıve mice when these ticks next fed. Our results clearly demonstrate that the spirochétě population experiences stochastic bottlenecks during both acquisition and transmission by the tick vector, as well as during persistent infection of its murine host.
  • Borrelia burgdorferi is a zoonotic pathogen whose maintenance in nature depends upon an infectious cycle that alternates between a tick vector and mammalian hosts. Lyme disease in humans results from transmission of B. burgdorferi by the bite of an infected tick. The population dynamics of B. burgdorferi throughout its natural infectious cycle are not well understood. We addressed this topic by assessing the colonization, dissemination and persistence of B. burgdorferi within and between the disparate mammalian and tick environments. To follow bacterial populations during infection, we generated seven isogenic but distinguishable B. burgdorferi clones, each with a unique sequence tag. These tags resulted in no phenotypic changes relative to wild type organisms, yet permitted highly sensitive and specific detection of individual clones by PCR. We followed the composition of the spirochete population throughout an experimental infectious cycle that was initiated with a mixed inoculum of all clones. We observed heterogeneity in the spirochete population disseminating within mice at very early time points, but all clones displayed the ability to colonize most mouse tissues by 3 weeks of infection. The complexity of clones subsequently declined as murine infection persisted. Larval ticks typically acquired a reduced and variable number of clones relative to what was present in infected mice at the time of tick feeding, and maintained the same spirochete population through the molt to nymphs. However, only a random subset of infectious spirochetes was transmitted to naıve mice when these ticks next fed. Our results clearly demonstrate that the spirochétě population experiences stochastic bottlenecks during both acquisition and transmission by the tick vector, as well as during persistent infection of its murine host. (en)
Title
  • Population Bottlenecks during the Infectious Cycle of the Lyme Disease Spirochete Borrelia burgdorferi
  • Population Bottlenecks during the Infectious Cycle of the Lyme Disease Spirochete Borrelia burgdorferi (en)
skos:prefLabel
  • Population Bottlenecks during the Infectious Cycle of the Lyme Disease Spirochete Borrelia burgdorferi
  • Population Bottlenecks during the Infectious Cycle of the Lyme Disease Spirochete Borrelia burgdorferi (en)
skos:notation
  • RIV/60077344:_____/14:00433206!RIV15-AV0-60077344
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I
http://linked.open...iv/cisloPeriodika
  • 6
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 37508
http://linked.open...ai/riv/idVysledku
  • RIV/60077344:_____/14:00433206
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • sensu stricto; mammalian host; peromyscus-leucopus; Ixodes ricinus; ticks; mice; transmission; dissemination; diversity; North America (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [FD0A739F9FE8]
http://linked.open...i/riv/nazevZdroje
  • PLoS ONE
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 9
http://linked.open...iv/tvurceVysledku
  • Štefka, Jan
  • Rego, Ryan O. M.
  • Bestor, A.
  • Rosa, P. A.
http://linked.open...ain/vavai/riv/wos
  • 000338506400061
issn
  • 1932-6203
number of pages
http://bibframe.org/vocab/doi
  • 10.1371/journal.pone.0101009
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software