Attributes | Values |
---|
rdf:type
| |
Description
| - Heme and other tetrapyrroles, often called “the colors of life, belong to the most important molecules of almost all extant organisms. They are synthesized by a common multistep pathway that is highly conserved throughout the tree of life [1]. One of the tetrapyrrole products is chlorophyll, the green pigment of plants and other phototrophs, which captures the energy of the sun. Vitamin B12, the most complex tetrapyrrole, is involved in DNA synthesis and energy metabolism [2]. The major product of tetrapyrrole biosynthesis in non-photosynthetic organisms is heme, an iron-coordinated porphyrin with the capacity to transfer electrons and bind diatomic gases. Here we summarize the current understanding of different aspects of heme metabolism in parasitic eukaryotes, including the synthesis and uptake of heme and its detoxification. A differential need for heme in distinct parasitic groups and the suitability of heme metabolism as a drug target for treating parasite-borne diseases are also discussed. First, however, let us review the functions of heme in various cellular processes.
- Heme and other tetrapyrroles, often called “the colors of life, belong to the most important molecules of almost all extant organisms. They are synthesized by a common multistep pathway that is highly conserved throughout the tree of life [1]. One of the tetrapyrrole products is chlorophyll, the green pigment of plants and other phototrophs, which captures the energy of the sun. Vitamin B12, the most complex tetrapyrrole, is involved in DNA synthesis and energy metabolism [2]. The major product of tetrapyrrole biosynthesis in non-photosynthetic organisms is heme, an iron-coordinated porphyrin with the capacity to transfer electrons and bind diatomic gases. Here we summarize the current understanding of different aspects of heme metabolism in parasitic eukaryotes, including the synthesis and uptake of heme and its detoxification. A differential need for heme in distinct parasitic groups and the suitability of heme metabolism as a drug target for treating parasite-borne diseases are also discussed. First, however, let us review the functions of heme in various cellular processes. (en)
|
Title
| - Make It, Take It, or Leave It: Heme Metabolism of Parasites
- Make It, Take It, or Leave It: Heme Metabolism of Parasites (en)
|
skos:prefLabel
| - Make It, Take It, or Leave It: Heme Metabolism of Parasites
- Make It, Take It, or Leave It: Heme Metabolism of Parasites (en)
|
skos:notation
| - RIV/60077344:_____/13:00392770!RIV14-AV0-60077344
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/60077344:_____/13:00392770
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Apicomplexan parasites; biosynthesis pathway; evolution; protein (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - US - Spojené státy americké
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| |
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Lukeš, Julius
- Oborník, Miroslav
- Kořený, Luděk
|
http://linked.open...ain/vavai/riv/wos
| |
issn
| |
number of pages
| |
http://bibframe.org/vocab/doi
| - 10.1371/journal.ppat.1003088
|