About: Neutrophil Extracellular Traps Entrap and Kill Borrelia burgdorferi Sensu Stricto Spirochetes and Are Not Affected by Ixodes ricinus Tick Saliva     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Lyme disease is caused by spirochetes of the Borrelia burgdorferi sensu lato complex. They are transmitted mainly by Ixodes ricinus ticks. After a few hours of infestation, neutrophils massively infiltrate the bite site. They can kill Borrelia via phagocytosis, oxidative burst, and hydrolytic enzymes. However, factors in tick saliva promote propagation of the bacteria in the host even in the presence of a large number of neutrophils. The neutrophil extracellular trap (NET) consists in the extrusion of the neutrophil's own DNA, forming traps that can retain and kill bacteria. The production of reactive oxygen species is apparently associated with the onset of NETs (NETosis). In this article, we describe NET formation at the tick bite site in vivo in mice. We show that Borrelia burgdorferi sensu stricto spirochetes become trapped and killed by NETs in humans and that the bacteria do not seem to release significant nucleases to evade this process. Saliva from I. ricinus did not affect NET formation by human neutrophils or its stability. However, it greatly decreased neutrophil reactive oxygen species production, suggesting that a strong decrease of hydrogen peroxide does not affect NET formation. Finally, round bodies trapped in NETs were observed, some of them staining as live bacteria. This observation could help contribute to a better understanding of the early steps of Borrelia invasion and erythema migrans formation after tick bite.
  • Lyme disease is caused by spirochetes of the Borrelia burgdorferi sensu lato complex. They are transmitted mainly by Ixodes ricinus ticks. After a few hours of infestation, neutrophils massively infiltrate the bite site. They can kill Borrelia via phagocytosis, oxidative burst, and hydrolytic enzymes. However, factors in tick saliva promote propagation of the bacteria in the host even in the presence of a large number of neutrophils. The neutrophil extracellular trap (NET) consists in the extrusion of the neutrophil's own DNA, forming traps that can retain and kill bacteria. The production of reactive oxygen species is apparently associated with the onset of NETs (NETosis). In this article, we describe NET formation at the tick bite site in vivo in mice. We show that Borrelia burgdorferi sensu stricto spirochetes become trapped and killed by NETs in humans and that the bacteria do not seem to release significant nucleases to evade this process. Saliva from I. ricinus did not affect NET formation by human neutrophils or its stability. However, it greatly decreased neutrophil reactive oxygen species production, suggesting that a strong decrease of hydrogen peroxide does not affect NET formation. Finally, round bodies trapped in NETs were observed, some of them staining as live bacteria. This observation could help contribute to a better understanding of the early steps of Borrelia invasion and erythema migrans formation after tick bite. (en)
Title
  • Neutrophil Extracellular Traps Entrap and Kill Borrelia burgdorferi Sensu Stricto Spirochetes and Are Not Affected by Ixodes ricinus Tick Saliva
  • Neutrophil Extracellular Traps Entrap and Kill Borrelia burgdorferi Sensu Stricto Spirochetes and Are Not Affected by Ixodes ricinus Tick Saliva (en)
skos:prefLabel
  • Neutrophil Extracellular Traps Entrap and Kill Borrelia burgdorferi Sensu Stricto Spirochetes and Are Not Affected by Ixodes ricinus Tick Saliva
  • Neutrophil Extracellular Traps Entrap and Kill Borrelia burgdorferi Sensu Stricto Spirochetes and Are Not Affected by Ixodes ricinus Tick Saliva (en)
skos:notation
  • RIV/60077344:_____/12:00387483!RIV13-AV0-60077344
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I
http://linked.open...iv/cisloPeriodika
  • 11
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 153933
http://linked.open...ai/riv/idVysledku
  • RIV/60077344:_____/12:00387483
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • GROUP-A STREPTOCOCCUS; IMMUNE-RESPONSE; PROTEIN; ESCAPE; INNATE; DEOXYRIBONUCLEASE; EXPRESSION; ALLOWS (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [F7552871EF0B]
http://linked.open...i/riv/nazevZdroje
  • Journal of Immunology
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 189
http://linked.open...iv/tvurceVysledku
  • Golovchenko, Maryna
  • Rudenko, Natalia
  • Baron, F.
  • Couvreur, B.
  • Desmet, C.
  • Dubois, S.
  • Dupiereux, I.
  • Elmoualij, B.
  • Faccinetto, C.
  • Heinen, E.
  • Menten-Dedoyart, C.
  • Oury, C.
  • Van Lerberghe, P. B.
http://linked.open...ain/vavai/riv/wos
  • 000311287600035
issn
  • 0022-1767
number of pages
http://bibframe.org/vocab/doi
  • 10.4049/jimmunol.1103771
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software