About: The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • In dark-adapted plants and algae, chlorophyll a fluorescence induction peaks within 1 s after irradiation due to well documented photochemical and non-photochemical processes. Here we show that the much slower fluorescence rise in cyanobacteria (the so-called %22S to M rise%22 in tens of seconds) is due to state 2 to state 1 transition. This has been demonstrated in particular for Synechocystis PCC6803, using its RpaC(-) mutant (locked in state 1) and its wild-type cells kept in hyperosmotic suspension (locked in state 2). In both cases, the inhibition of state changes correlates with the disappearance of the S to M fluorescence rise, confirming its assignment to the state 2 to state 1 transition. The general physiological relevance of the SM rise is supported by its occurrence in several cyanobacterial strains: Synechococcus (PCC 7942, WH 5701) and diazotrophic single cell cyanobacterium (Cyanothece sp. ATCC 51142). We also show here that the SM fluorescence rise, and also the state transition changes are less prominent in filamentous diazotrophic cyanobacterium Nostoc sp. (PCC 7120) and absent in phycobilisome-less cyanobacterium Prochlorococcus marinas PCC 9511. Surprisingly, it is also absent in the phycobiliprotein rod containing Acaryochloris marina (MBIC 11017). All these results show that the S to M fluorescence rise reflects state 2 to state 1 transition in cyanobacteria with phycobilisomes formed by rods and core parts. We show that the pronounced SM fluorescence rise may reflect a protective mechanism for excess energy dissipation in those cyanobacteria (e.g. in Synechococcus PCC 7942) that are less efficient in other protective mechanisms, such as blue light induced non-photochemical quenching. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
  • In dark-adapted plants and algae, chlorophyll a fluorescence induction peaks within 1 s after irradiation due to well documented photochemical and non-photochemical processes. Here we show that the much slower fluorescence rise in cyanobacteria (the so-called %22S to M rise%22 in tens of seconds) is due to state 2 to state 1 transition. This has been demonstrated in particular for Synechocystis PCC6803, using its RpaC(-) mutant (locked in state 1) and its wild-type cells kept in hyperosmotic suspension (locked in state 2). In both cases, the inhibition of state changes correlates with the disappearance of the S to M fluorescence rise, confirming its assignment to the state 2 to state 1 transition. The general physiological relevance of the SM rise is supported by its occurrence in several cyanobacterial strains: Synechococcus (PCC 7942, WH 5701) and diazotrophic single cell cyanobacterium (Cyanothece sp. ATCC 51142). We also show here that the SM fluorescence rise, and also the state transition changes are less prominent in filamentous diazotrophic cyanobacterium Nostoc sp. (PCC 7120) and absent in phycobilisome-less cyanobacterium Prochlorococcus marinas PCC 9511. Surprisingly, it is also absent in the phycobiliprotein rod containing Acaryochloris marina (MBIC 11017). All these results show that the S to M fluorescence rise reflects state 2 to state 1 transition in cyanobacteria with phycobilisomes formed by rods and core parts. We show that the pronounced SM fluorescence rise may reflect a protective mechanism for excess energy dissipation in those cyanobacteria (e.g. in Synechococcus PCC 7942) that are less efficient in other protective mechanisms, such as blue light induced non-photochemical quenching. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. (en)
Title
  • The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition
  • The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition (en)
skos:prefLabel
  • The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition
  • The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition (en)
skos:notation
  • RIV/60076658:12310/12:43883430!RIV13-MSM-12310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(ED2.1.00/03.0110), P(GBP501/12/G055), P(GP206/09/P094), V
http://linked.open...iv/cisloPeriodika
  • 8
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 168507
http://linked.open...ai/riv/idVysledku
  • RIV/60076658:12310/12:43883430
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • transition; state; due; cyanobacteria; rise; fluorescence; slow; The (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [0E90A29048FE]
http://linked.open...i/riv/nazevZdroje
  • BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 1817
http://linked.open...iv/tvurceVysledku
  • Kaňa, Radek
  • Kotabová, Eva
  • Prášil, Ondřej
  • Komárek, Ondrej
  • Papageorgiou, George C.
  • Sediva, Barbora
http://linked.open...ain/vavai/riv/wos
  • 000306202700015
issn
  • 0005-2728
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.bbabio.2012.02.024
http://localhost/t...ganizacniJednotka
  • 12310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software