About: Development of the meshless finite volume particle method with exact and efficient calculation of interparticle area     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • The Finite Volume Particle Method (FVPM) is a meshless method based on a definition of interparticle area which is closely analogous to cell face area in the classical finite volume method. In previous work, the interparticle area has been computed by numerical integration, which is a source of error and is extremely expensive. We show that if the particle weight or kernel function is defined as a discontinuous top-hat function, the particle interaction vectors may be evaluated exactly and efficiently. The new formulation reduces overall computational time by a factor between 6.4 and 8.2. In numerical experiments on a viscous flow with an analytical solution, the method converges under all conditions. Significantly, in contrast with standard FVPM and SPH, error depends on particle size but not on particle overlap (as long as the computational domain is completely covered by particles). The new method is shown to be superior to standard FVPM for shock tube flow and inviscid steady transonic flow. In benchmarking on a viscous multiphase flow application, FVPM with exact interparticle area is shown to be competitive with a mesh-based volume-of-fluid solver in terms of computational time required to resolve the structure of an interface.
  • The Finite Volume Particle Method (FVPM) is a meshless method based on a definition of interparticle area which is closely analogous to cell face area in the classical finite volume method. In previous work, the interparticle area has been computed by numerical integration, which is a source of error and is extremely expensive. We show that if the particle weight or kernel function is defined as a discontinuous top-hat function, the particle interaction vectors may be evaluated exactly and efficiently. The new formulation reduces overall computational time by a factor between 6.4 and 8.2. In numerical experiments on a viscous flow with an analytical solution, the method converges under all conditions. Significantly, in contrast with standard FVPM and SPH, error depends on particle size but not on particle overlap (as long as the computational domain is completely covered by particles). The new method is shown to be superior to standard FVPM for shock tube flow and inviscid steady transonic flow. In benchmarking on a viscous multiphase flow application, FVPM with exact interparticle area is shown to be competitive with a mesh-based volume-of-fluid solver in terms of computational time required to resolve the structure of an interface. (en)
Title
  • Development of the meshless finite volume particle method with exact and efficient calculation of interparticle area
  • Development of the meshless finite volume particle method with exact and efficient calculation of interparticle area (en)
skos:prefLabel
  • Development of the meshless finite volume particle method with exact and efficient calculation of interparticle area
  • Development of the meshless finite volume particle method with exact and efficient calculation of interparticle area (en)
skos:notation
  • RIV/49777513:23520/14:43922898!RIV15-MSM-23520___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED1.1.00/02.0090)
http://linked.open...iv/cisloPeriodika
  • 6
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 11061
http://linked.open...ai/riv/idVysledku
  • RIV/49777513:23520/14:43922898
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Rayleigh-Taylor instability; NACA 0012; shock tube; Taylor-Green flow; meshless method; finite volume particle method (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [5A6B645965FC]
http://linked.open...i/riv/nazevZdroje
  • COMPUTER PHYSICS COMMUNICATIONS
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 185
http://linked.open...iv/tvurceVysledku
  • Lobovský, Libor
  • Nestor, Ruairi M.
  • Quinlan, Nathan J.
http://linked.open...ain/vavai/riv/wos
  • 000337929400005
issn
  • 0010-4655
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.cpc.2014.02.017
http://localhost/t...ganizacniJednotka
  • 23520
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software