About: Optimized Acoustic Likelihoods Computation for NVIDIA and ATI/AMD Graphics Processors     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • In this paper, we describe an optimized version of a Gaussian-mixture-based acoustic model likelihood evaluation algorithm for graphical processing units (GPUs). The evaluation of these likelihoods is one of the most computationally intensive parts of automatic speech recognizers, but it can be parallelized and offloaded to GPU devices. Our approach offers a significant speed-up over the recently published approaches, because it utilizes the GPU architecture in a more effective manner. All the recent implementations have been intended only for NVIDIA graphics processors, programmed either in CUDA or OpenCL GPU programming frameworks. We present results for both CUDA and OpenCL. Further, we have developed an OpenCL implementation optimized for ATI/AMD GPUs. Results suggest that even very large acoustic models can be used in real-time speech recognition engines on computers equipped with a low-end GPU or laptops. In addition, the completely asynchronous GPU management provides additional CPU resources for the decoder part of the LVCSR. The optimized implementation enables us to apply fusion techniques together with evaluating many (10 or even more) speaker-specific acoustic models. We apply this technique to a real-time parliamentary speech recognition system where the speaker changes frequently.
  • In this paper, we describe an optimized version of a Gaussian-mixture-based acoustic model likelihood evaluation algorithm for graphical processing units (GPUs). The evaluation of these likelihoods is one of the most computationally intensive parts of automatic speech recognizers, but it can be parallelized and offloaded to GPU devices. Our approach offers a significant speed-up over the recently published approaches, because it utilizes the GPU architecture in a more effective manner. All the recent implementations have been intended only for NVIDIA graphics processors, programmed either in CUDA or OpenCL GPU programming frameworks. We present results for both CUDA and OpenCL. Further, we have developed an OpenCL implementation optimized for ATI/AMD GPUs. Results suggest that even very large acoustic models can be used in real-time speech recognition engines on computers equipped with a low-end GPU or laptops. In addition, the completely asynchronous GPU management provides additional CPU resources for the decoder part of the LVCSR. The optimized implementation enables us to apply fusion techniques together with evaluating many (10 or even more) speaker-specific acoustic models. We apply this technique to a real-time parliamentary speech recognition system where the speaker changes frequently. (en)
Title
  • Optimized Acoustic Likelihoods Computation for NVIDIA and ATI/AMD Graphics Processors
  • Optimized Acoustic Likelihoods Computation for NVIDIA and ATI/AMD Graphics Processors (en)
skos:prefLabel
  • Optimized Acoustic Likelihoods Computation for NVIDIA and ATI/AMD Graphics Processors
  • Optimized Acoustic Likelihoods Computation for NVIDIA and ATI/AMD Graphics Processors (en)
skos:notation
  • RIV/49777513:23520/12:43921648!RIV14-GA0-23520___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GBP103/12/G084)
http://linked.open...iv/cisloPeriodika
  • 6
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 157001
http://linked.open...ai/riv/idVysledku
  • RIV/49777513:23520/12:43921648
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • OpenCL; CUDA; GPU; software performance; parallel architectures; parallel algorithms; Automatic speech recognition (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [3429813237E4]
http://linked.open...i/riv/nazevZdroje
  • IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 20
http://linked.open...iv/tvurceVysledku
  • Psutka jr., Josef
  • Psutka, Josef
  • Vaněk, Jan
  • Trmal, Jan
http://linked.open...ain/vavai/riv/wos
  • 000302742400001
issn
  • 1558-7916
number of pages
http://bibframe.org/vocab/doi
  • 10.1109/TASL.2012.2190928
http://localhost/t...ganizacniJednotka
  • 23520
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software