About: Slowly oscillating wavefronts of the KPP-Fisher delayed equation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • This paper concerns the semi-wavefronts (i.e. bounded solutions u = phi(x.v+ct) >0, |v| = 1, satisfying phi(-infinity) = 0) to the delayed KPP-Fisher equation u(t)(t, x) = x) u(t, x)(1-u(t -tau,x)), u >= 0, x is an element of R-m First, we show that the profile phi of each semi-wavefront should be either monotone or eventually sine-like slowly oscillating around the positive equilibrium. Then a solution to the problem of existence of semi-wavefronts is provided. Next, we prove that the semi-wavefronts are in fact wavefronts (i.e. additionally phi(+infinity) = 1) if c >= 2 and tau <= 1; our proof uses dynamical properties of an auxiliary one-dimensional map with the negative Schwarzian. However, we also show that, for c >= 2 and tau >= 1.87, each semi-wavefront profile phi(t) should develop non-decaying oscillations around 1 as t ->+infinity.
  • This paper concerns the semi-wavefronts (i.e. bounded solutions u = phi(x.v+ct) >0, |v| = 1, satisfying phi(-infinity) = 0) to the delayed KPP-Fisher equation u(t)(t, x) = x) u(t, x)(1-u(t -tau,x)), u >= 0, x is an element of R-m First, we show that the profile phi of each semi-wavefront should be either monotone or eventually sine-like slowly oscillating around the positive equilibrium. Then a solution to the problem of existence of semi-wavefronts is provided. Next, we prove that the semi-wavefronts are in fact wavefronts (i.e. additionally phi(+infinity) = 1) if c >= 2 and tau <= 1; our proof uses dynamical properties of an auxiliary one-dimensional map with the negative Schwarzian. However, we also show that, for c >= 2 and tau >= 1.87, each semi-wavefront profile phi(t) should develop non-decaying oscillations around 1 as t ->+infinity. (en)
Title
  • Slowly oscillating wavefronts of the KPP-Fisher delayed equation
  • Slowly oscillating wavefronts of the KPP-Fisher delayed equation (en)
skos:prefLabel
  • Slowly oscillating wavefronts of the KPP-Fisher delayed equation
  • Slowly oscillating wavefronts of the KPP-Fisher delayed equation (en)
skos:notation
  • RIV/47813059:19610/14:#0000451!RIV15-MSM-19610___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(EE2.3.20.0002)
http://linked.open...iv/cisloPeriodika
  • 9
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 45353
http://linked.open...ai/riv/idVysledku
  • RIV/47813059:19610/14:#0000451
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Upper and lower solutions; monotone traveling waves; slowly oscillating fronts; Wright's equation (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [145E88A262DB]
http://linked.open...i/riv/nazevZdroje
  • Discrete and Continuous Dynamical Systems
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 34
http://linked.open...iv/tvurceVysledku
  • Hasík, Karel
  • Trofimchuk, Sergei
http://linked.open...ain/vavai/riv/wos
  • 000333556300012
issn
  • 1078-0947
number of pages
http://bibframe.org/vocab/doi
  • 10.3934/dcds.2014.34.3511
http://localhost/t...ganizacniJednotka
  • 19610
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 106 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software