Attributes | Values |
---|
rdf:type
| |
Description
| - Forti and Paganoni [Grazer Math. Ber. {\bf 339} (1999), 125--140] found a triangular map $F(x,y)=(f(x),g_x (y))$ from $I\times I$ into itself for which closed set of~periodic points is a proper subset of the set of chain recurrent points. We asked whether there is a characterization of triangular maps for which every chain recurrent point is periodic. We answer this question in positive by showing that, for a triangular map with closed set of periodic points and any posi\-tive real~$\varepsilon$, every $\varepsilon$-chain from a chain recurrent point to itself may be represented as a finite union of $\varepsilon$-chains whose all points either are periodic or form a nontrivial $\varepsilon$-chain of some one-dimensional map~$g_x$.
- Forti and Paganoni [Grazer Math. Ber. {\bf 339} (1999), 125--140] found a triangular map $F(x,y)=(f(x),g_x (y))$ from $I\times I$ into itself for which closed set of~periodic points is a proper subset of the set of chain recurrent points. We asked whether there is a characterization of triangular maps for which every chain recurrent point is periodic. We answer this question in positive by showing that, for a triangular map with closed set of periodic points and any posi\-tive real~$\varepsilon$, every $\varepsilon$-chain from a chain recurrent point to itself may be represented as a finite union of $\varepsilon$-chains whose all points either are periodic or form a nontrivial $\varepsilon$-chain of some one-dimensional map~$g_x$. (en)
|
Title
| - Triangular maps with the chain recurrent points periodic
- Triangular maps with the chain recurrent points periodic (en)
|
skos:prefLabel
| - Triangular maps with the chain recurrent points periodic
- Triangular maps with the chain recurrent points periodic (en)
|
skos:notation
| - RIV/47813059:19610/03:00000115!RIV/2004/MSM/196104/N
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(GA201/00/0859), Z(MSM 192400002)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/47813059:19610/03:00000115
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Triangular maps; periodic points; chain recurrent poin (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - Acta Mathematica Universitatis Comenianae
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...ocetUcastnikuAkce
| |
http://linked.open...nichUcastnikuAkce
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| |
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |
http://localhost/t...ganizacniJednotka
| |