About: Hamiltonian field theory revisited: A geometric approach to regularity     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • A reformulation and generalization of basic concepts such as Hamiltonian system, Hamilton equations, regularity, and Legendre transformation for variational systems on fibered manifolds, is presented. The theory is based on the concept of Lepagean (n+1)-form (where n is the dimension of the base manifold). Contrary to the standard approach, where Hamiltonian theory is related to a single Lagrangian, here a Hamiltonian system is associated with an Euler-Lagrange form, i.e., with the class of all equivalent Lagrangians. Hamilton equations are introduced to be equations for integral sections of an exterior differential system. Relations between extremals and solutions of Hamilton equations are studied in detail. New regularity conditions and Legendre transformation formulas are found a procedure of regularization of variational problems is proposed.
  • A reformulation and generalization of basic concepts such as Hamiltonian system, Hamilton equations, regularity, and Legendre transformation for variational systems on fibered manifolds, is presented. The theory is based on the concept of Lepagean (n+1)-form (where n is the dimension of the base manifold). Contrary to the standard approach, where Hamiltonian theory is related to a single Lagrangian, here a Hamiltonian system is associated with an Euler-Lagrange form, i.e., with the class of all equivalent Lagrangians. Hamilton equations are introduced to be equations for integral sections of an exterior differential system. Relations between extremals and solutions of Hamilton equations are studied in detail. New regularity conditions and Legendre transformation formulas are found a procedure of regularization of variational problems is proposed. (en)
Title
  • Hamiltonian field theory revisited: A geometric approach to regularity
  • Hamiltonian field theory revisited: A geometric approach to regularity (en)
skos:prefLabel
  • Hamiltonian field theory revisited: A geometric approach to regularity
  • Hamiltonian field theory revisited: A geometric approach to regularity (en)
skos:notation
  • RIV/47813059:19610/01:00000068!RIV/2002/MSM/196102/N
http://linked.open.../vavai/riv/strany
  • 187;207
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • Z(MSM 192400002)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 681451
http://linked.open...ai/riv/idVysledku
  • RIV/47813059:19610/01:00000068
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Lagrangian systems; Poincaré-Cartan form; Lepagean form; Hamiltonian system; Hamilton extremals; Hamilton-DeDonder theory; Hamilton equations; regularity; Legendre transformations (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [F2113DA16224]
http://linked.open...v/mistoKonaniAkce
  • Debrecen
http://linked.open...i/riv/mistoVydani
  • Debrecen
http://linked.open...i/riv/nazevZdroje
  • Steps in Differential Geometry
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...ocetUcastnikuAkce
http://linked.open...nichUcastnikuAkce
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Krupková, Olga
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Debrecen University
http://localhost/t...ganizacniJednotka
  • 19610
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 110 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software