About: Cosmic background radiation in the vicinity of a Schwarzschild black hole: No classic firewall     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • The cosmic blackbody background radiation pervades the entire Universe, and so falls into every astrophysical black hole. The blueshift of the infalling photons, measured by a static observer, is infinite at the event horizon. This raises a question as to whether a %22firewall%22 of high energy density may form just outside the horizon, or whether the effect can be attributed exclusively to a singular behavior of the static observer's frame at the horizon. In principle, the presence of such a firewall may alter the motion of the infalling matter, influence the black hole evolution, or even invalidate the vacuum Einstein field equation solution as a realistic approximation for black holes. In this paper we show by means of analytic calculations that all these effects indeed exist, but their magnitude is typically negligibly small, even though the matter stress tensor is divergent in the static frame at r = 2M. That is not surprising because of the divergent relation of that frame to a freely falling frame as r -> 2M; however, it represents a kind of classical analogue for the black hole complementarity principle that has been proposed for quantum effects near a black hole. What is perhaps more surprising is the divergence of the radiation stress tensor for massive particles moving on circular geodesic orbits for values of r approaching r = 3M. However such orbits will not occur for infalling matter in realistic accretion discs.
  • The cosmic blackbody background radiation pervades the entire Universe, and so falls into every astrophysical black hole. The blueshift of the infalling photons, measured by a static observer, is infinite at the event horizon. This raises a question as to whether a %22firewall%22 of high energy density may form just outside the horizon, or whether the effect can be attributed exclusively to a singular behavior of the static observer's frame at the horizon. In principle, the presence of such a firewall may alter the motion of the infalling matter, influence the black hole evolution, or even invalidate the vacuum Einstein field equation solution as a realistic approximation for black holes. In this paper we show by means of analytic calculations that all these effects indeed exist, but their magnitude is typically negligibly small, even though the matter stress tensor is divergent in the static frame at r = 2M. That is not surprising because of the divergent relation of that frame to a freely falling frame as r -> 2M; however, it represents a kind of classical analogue for the black hole complementarity principle that has been proposed for quantum effects near a black hole. What is perhaps more surprising is the divergence of the radiation stress tensor for massive particles moving on circular geodesic orbits for values of r approaching r = 3M. However such orbits will not occur for infalling matter in realistic accretion discs. (en)
Title
  • Cosmic background radiation in the vicinity of a Schwarzschild black hole: No classic firewall
  • Cosmic background radiation in the vicinity of a Schwarzschild black hole: No classic firewall (en)
skos:prefLabel
  • Cosmic background radiation in the vicinity of a Schwarzschild black hole: No classic firewall
  • Cosmic background radiation in the vicinity of a Schwarzschild black hole: No classic firewall (en)
skos:notation
  • RIV/47813059:19240/14:#0005078!RIV15-MSM-19240___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I
http://linked.open...iv/cisloPeriodika
  • 12
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 9047
http://linked.open...ai/riv/idVysledku
  • RIV/47813059:19240/14:#0005078
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Eddington capture sphere; accretion; disks; jets (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [6A90F2798809]
http://linked.open...i/riv/nazevZdroje
  • Physical Review D
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 90
http://linked.open...iv/tvurceVysledku
  • Abramowicz, Marek Artur
  • Ellis, G. F. R.
  • Vincent, Frédéric H.
  • Wielgus, Maciek
http://linked.open...ain/vavai/riv/wos
  • 000346830000010
issn
  • 1550-7998
number of pages
http://bibframe.org/vocab/doi
  • 10.1103/PhysRevD.90.124024
http://localhost/t...ganizacniJednotka
  • 19240
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 77 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software