About: Changes in the nanoparticle aggregation rate due to the additional effect of electrostatic and magnetic forces on mass transport coefficient     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • The need may arise to be able to simulate the migration of groundwater nanoparticles through the ground. Transportation velocities of nanoparticles are different from that of water and depend on many processes that occur during migration. Unstable nanoparticles, such as zero-valent iron nanoparticles, are especially slowed down by aggregation between them. The aggregation occurs when attracting forces outweigh repulsive forces between the particles. In the case of iron nanoparticles that are used for remediation, magnetic forces between particles contribute to attractive forces and nanoparticles aggregate rapidly. This paper describes the addition of attractive magnetic forces and repulsive electrostatic forces between particles (by 'particle', we mean both single nanoparticles and created aggregates) into a basic model of aggregation which is commonly used. This model is created on the basis of the flow of particles in the proximity of observed particles that gives the rate of aggregation of the observed particle. By using a limit distance that has been described in our previous work, the flow of particles around one particle is observed in larger spacing between the particles. Attractive magnetic forces between particles draw the particles into closer proximity and result in aggregation. This model fits more closely with rapid aggregation which occurs between magnetic nanoparticles.
  • The need may arise to be able to simulate the migration of groundwater nanoparticles through the ground. Transportation velocities of nanoparticles are different from that of water and depend on many processes that occur during migration. Unstable nanoparticles, such as zero-valent iron nanoparticles, are especially slowed down by aggregation between them. The aggregation occurs when attracting forces outweigh repulsive forces between the particles. In the case of iron nanoparticles that are used for remediation, magnetic forces between particles contribute to attractive forces and nanoparticles aggregate rapidly. This paper describes the addition of attractive magnetic forces and repulsive electrostatic forces between particles (by 'particle', we mean both single nanoparticles and created aggregates) into a basic model of aggregation which is commonly used. This model is created on the basis of the flow of particles in the proximity of observed particles that gives the rate of aggregation of the observed particle. By using a limit distance that has been described in our previous work, the flow of particles around one particle is observed in larger spacing between the particles. Attractive magnetic forces between particles draw the particles into closer proximity and result in aggregation. This model fits more closely with rapid aggregation which occurs between magnetic nanoparticles. (en)
Title
  • Changes in the nanoparticle aggregation rate due to the additional effect of electrostatic and magnetic forces on mass transport coefficient
  • Changes in the nanoparticle aggregation rate due to the additional effect of electrostatic and magnetic forces on mass transport coefficient (en)
skos:prefLabel
  • Changes in the nanoparticle aggregation rate due to the additional effect of electrostatic and magnetic forces on mass transport coefficient
  • Changes in the nanoparticle aggregation rate due to the additional effect of electrostatic and magnetic forces on mass transport coefficient (en)
skos:notation
  • RIV/46747885:24220/13:#0002448!RIV14-MPO-24220___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(FR-TI1/456)
http://linked.open...iv/cisloPeriodika
  • 2013-01-10
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 64944
http://linked.open...ai/riv/idVysledku
  • RIV/46747885:24220/13:#0002448
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Magnetic nanoparticles; Aggregation; Mass transport coefficient; Limit distance (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [31417FDA298F]
http://linked.open...i/riv/nazevZdroje
  • Nanoscale Research Letters
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 8
http://linked.open...iv/tvurceVysledku
  • Rosická, Dana
  • Šembera, Jan
http://linked.open...ain/vavai/riv/wos
  • 000316822400001
issn
  • 1931-7573
number of pages
http://bibframe.org/vocab/doi
  • 10.1186/1556-276X-8-20
http://localhost/t...ganizacniJednotka
  • 24220
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software