About: Acceleration of Grammatical Evolution Using Graphics Processing Units     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Several papers show that symbolic regression is suitable for data analysis and prediction in financial markets. Grammatical Evolution (GE), a grammar-based form of Genetic Programming (GP), has been successfully applied in solving various tasks including symbolic regression. However, often the computational effort to calculate the fitness of a solution in GP can limit the area of possible application and/or the extent of experimentation undertaken.  This paper deals with utilizing mainstream graphics processing units (GPU) for acceleration of GE solving symbolic regression. GPU optimization details are discussed and the NVCC compiler is analyzed.  We design an effective mapping of the algorithm to the CUDA framework, and in so doing must tackle constraints of the GPU approach, such as the PCI-express bottleneck and main memory transactions.  This is the first occasion GE has been adapted for running on a GPU. We measure our implementation running on one core of CPU Core i7 and GPU GTX
  • Several papers show that symbolic regression is suitable for data analysis and prediction in financial markets. Grammatical Evolution (GE), a grammar-based form of Genetic Programming (GP), has been successfully applied in solving various tasks including symbolic regression. However, often the computational effort to calculate the fitness of a solution in GP can limit the area of possible application and/or the extent of experimentation undertaken.  This paper deals with utilizing mainstream graphics processing units (GPU) for acceleration of GE solving symbolic regression. GPU optimization details are discussed and the NVCC compiler is analyzed.  We design an effective mapping of the algorithm to the CUDA framework, and in so doing must tackle constraints of the GPU approach, such as the PCI-express bottleneck and main memory transactions.  This is the first occasion GE has been adapted for running on a GPU. We measure our implementation running on one core of CPU Core i7 and GPU GTX (en)
Title
  • Acceleration of Grammatical Evolution Using Graphics Processing Units
  • Acceleration of Grammatical Evolution Using Graphics Processing Units (en)
skos:prefLabel
  • Acceleration of Grammatical Evolution Using Graphics Processing Units
  • Acceleration of Grammatical Evolution Using Graphics Processing Units (en)
skos:notation
  • RIV/00216305:26230/11:PU96181!RIV13-MSM-26230___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GAP103/10/1517), S, Z(MSM0021630528)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 184380
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26230/11:PU96181
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • CUDA, grammatical evolution, graphics chips, GPU, GPGPU, speedup, symbolic regression (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [85C5194DD8B9]
http://linked.open...v/mistoKonaniAkce
  • Dublin
http://linked.open...i/riv/mistoVydani
  • New York
http://linked.open...i/riv/nazevZdroje
  • Proceedings of the 2011 GECCO conference companion on Genetic and evolutionary computation
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Jaroš, Jiří
  • Pospíchal, Petr
  • Schwarz, Josef
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Association for Computing Machinery
https://schema.org/isbn
  • 978-1-4503-0690-4
http://localhost/t...ganizacniJednotka
  • 26230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software