Attributes | Values |
---|
rdf:type
| |
rdfs:seeAlso
| |
Description
| - Differential equations with piecewise constant argument describe various phenomena, e.g., in biology, mechanics and electronics. Here we study a special case of these equations, namely, a system of equations of the form u1'=F1([t],u1([t]),u2([t]))+g1(t), u2'=F2([t],u1([t]),u2([t]))+g2(t), where [t] stands for the greatest integer function and F1, F2, g1 and g2 are continuous functions. Our program is designed to find the solution of such system on the interval [t0, t0+n] if the initial condition u1(t0)=u10, u2(t0)=u20 is given. The solution is found stepwise - on each interval [t0+i-1, t0+i], i=1,...,n, separately. The values of the solution at chosen points can be computed. Further, the graph of the can be shown - the user can choose between several types of graphs (u1 or/and u2 in 2D, a 3D curve or a phase portrait).
- Differential equations with piecewise constant argument describe various phenomena, e.g., in biology, mechanics and electronics. Here we study a special case of these equations, namely, a system of equations of the form u1'=F1([t],u1([t]),u2([t]))+g1(t), u2'=F2([t],u1([t]),u2([t]))+g2(t), where [t] stands for the greatest integer function and F1, F2, g1 and g2 are continuous functions. Our program is designed to find the solution of such system on the interval [t0, t0+n] if the initial condition u1(t0)=u10, u2(t0)=u20 is given. The solution is found stepwise - on each interval [t0+i-1, t0+i], i=1,...,n, separately. The values of the solution at chosen points can be computed. Further, the graph of the can be shown - the user can choose between several types of graphs (u1 or/and u2 in 2D, a 3D curve or a phase portrait). (en)
|
Title
| - System of differential equations with piecewise constant argument
- System of differential equations with piecewise constant argument (en)
|
skos:prefLabel
| - System of differential equations with piecewise constant argument
- System of differential equations with piecewise constant argument (en)
|
skos:notation
| - RIV/00216305:26220/14:PR28044!RIV15-MSM-26220___
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...onomickeParametry
| - Ekonomické parametry (zvýšení zisku, objemu výroby apod.) prozatím nejsou známy. Jedná se o software využitelný v různých projektech aplikovaném výzkumu.
|
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00216305:26220/14:PR28044
|
http://linked.open...terniIdentifikace
| |
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - differential equation, piecewise constant argument (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open.../licencniPoplatek
| |
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...echnickeParametry
| - Software je spouštěn ze serveru UMAT FEKT VUT v Brně prostřednictvím internetového prohlížeče. Na klientském PC je nutné mít nainstalovánu Javu. Podmínkou spuštění softwaru je přístup k serveru UMAT FEKT VUT prostřednictvím WWW - ten není omezován, takže software může využívat libovolná vědecká nebo výzkumná instituce.
|
http://linked.open...iv/tvurceVysledku
| - Hlavičková, Irena
- Klimešová, Marie
|
http://linked.open...avai/riv/vlastnik
| |
http://linked.open...itiJinymSubjektem
| |
http://localhost/t...ganizacniJednotka
| |