About: System of differential equations with piecewise constant argument     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Differential equations with piecewise constant argument describe various phenomena, e.g., in biology, mechanics and electronics. Here we study a special case of these equations, namely, a system of equations of the form u1'=F1([t],u1([t]),u2([t]))+g1(t), u2'=F2([t],u1([t]),u2([t]))+g2(t), where [t] stands for the greatest integer function and F1, F2, g1 and g2 are continuous functions. Our program is designed to find the solution of such system on the interval [t0, t0+n] if the initial condition u1(t0)=u10, u2(t0)=u20 is given. The solution is found stepwise - on each interval [t0+i-1, t0+i], i=1,...,n, separately. The values of the solution at chosen points can be computed. Further, the graph of the can be shown - the user can choose between several types of graphs (u1 or/and u2 in 2D, a 3D curve or a phase portrait).
  • Differential equations with piecewise constant argument describe various phenomena, e.g., in biology, mechanics and electronics. Here we study a special case of these equations, namely, a system of equations of the form u1'=F1([t],u1([t]),u2([t]))+g1(t), u2'=F2([t],u1([t]),u2([t]))+g2(t), where [t] stands for the greatest integer function and F1, F2, g1 and g2 are continuous functions. Our program is designed to find the solution of such system on the interval [t0, t0+n] if the initial condition u1(t0)=u10, u2(t0)=u20 is given. The solution is found stepwise - on each interval [t0+i-1, t0+i], i=1,...,n, separately. The values of the solution at chosen points can be computed. Further, the graph of the can be shown - the user can choose between several types of graphs (u1 or/and u2 in 2D, a 3D curve or a phase portrait). (en)
Title
  • System of differential equations with piecewise constant argument
  • System of differential equations with piecewise constant argument (en)
skos:prefLabel
  • System of differential equations with piecewise constant argument
  • System of differential equations with piecewise constant argument (en)
skos:notation
  • RIV/00216305:26220/14:PR28044!RIV15-MSM-26220___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...onomickeParametry
  • Ekonomické parametry (zvýšení zisku, objemu výroby apod.) prozatím nejsou známy. Jedná se o software využitelný v různých projektech aplikovaném výzkumu.
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 49134
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26220/14:PR28044
http://linked.open...terniIdentifikace
  • diffEqPCAsys
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • differential equation, piecewise constant argument (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [4659EF768852]
http://linked.open.../licencniPoplatek
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...echnickeParametry
  • Software je spouštěn ze serveru UMAT FEKT VUT v Brně prostřednictvím internetového prohlížeče. Na klientském PC je nutné mít nainstalovánu Javu. Podmínkou spuštění softwaru je přístup k serveru UMAT FEKT VUT prostřednictvím WWW - ten není omezován, takže software může využívat libovolná vědecká nebo výzkumná instituce.
http://linked.open...iv/tvurceVysledku
  • Hlavičková, Irena
  • Klimešová, Marie
http://linked.open...avai/riv/vlastnik
http://linked.open...itiJinymSubjektem
http://localhost/t...ganizacniJednotka
  • 26220
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 91 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software