About: Medical Image Denoising by Improved Kuan Filter     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • This paper focuses on the issue of speckle noise and its suppression. Firstly, the multiplicative speckle noise model and its mathematical formulation are introduced. Then, certain de-noising methods are described together with possible improvements. On their basis, an improvement of Kuan method (KuanS) is proposed. Performance of proposed KuanS method is tested on real ultrasound images and synthetic images corrupted with speckle noise. PSNR, edge preservation, standard deviation of homogenous regions and SIR are used for the evaluation of quality of noise suppression. Performance of the KuanS is compared with other methods. The KuanS method achieves satisfactory results even in comparison with more complex methods (SRAD, wavelet based noise suppression).
  • This paper focuses on the issue of speckle noise and its suppression. Firstly, the multiplicative speckle noise model and its mathematical formulation are introduced. Then, certain de-noising methods are described together with possible improvements. On their basis, an improvement of Kuan method (KuanS) is proposed. Performance of proposed KuanS method is tested on real ultrasound images and synthetic images corrupted with speckle noise. PSNR, edge preservation, standard deviation of homogenous regions and SIR are used for the evaluation of quality of noise suppression. Performance of the KuanS is compared with other methods. The KuanS method achieves satisfactory results even in comparison with more complex methods (SRAD, wavelet based noise suppression). (en)
Title
  • Medical Image Denoising by Improved Kuan Filter
  • Medical Image Denoising by Improved Kuan Filter (en)
skos:prefLabel
  • Medical Image Denoising by Improved Kuan Filter
  • Medical Image Denoising by Improved Kuan Filter (en)
skos:notation
  • RIV/00216305:26220/12:PU97567!RIV13-MSM-26220___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED2.1.00/03.0072), P(ME10123), S
http://linked.open...iv/cisloPeriodika
  • 01
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 149241
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26220/12:PU97567
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Noise, speckle noise, image de-noising, Kuan filter, PSNR, standard deviation (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • CZ - Česká republika
http://linked.open...ontrolniKodProRIV
  • [95EF75188608]
http://linked.open...i/riv/nazevZdroje
  • Advances in Electrical and Electronic Engineering - intenetový časopis (http://advances.utc.sk)
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 10
http://linked.open...iv/tvurceVysledku
  • Beneš, Radek
  • Říha, Kamil
issn
  • 1804-3119
number of pages
http://localhost/t...ganizacniJednotka
  • 26220
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 100 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software