Attributes | Values |
---|
rdf:type
| |
rdfs:seeAlso
| |
Description
| - The field of low-voltage low-power CMOS technology has grown rapidly in recent years; it is an essential prerequisite particularly for portable electronic equipment and implantable medical devices due to its influence on battery lifetime. Recently, significant improvements in implementing circuits working in the low-voltage low-power area have been achieved, but circuit designers face severe challenges when trying to improve or even maintain the circuit performance with reduced supply voltage. In this paper, a low-voltage ultra-low-power current conveyor second generation CCII based on quasi-floating gate transistors is presented. The proposed circuit operates at a very low supply voltage of only +-0.4 V with rail-to-rail voltage swing capability and a total quiescent power consumption of mere 9.5 uW. Further, the proposed circuit is not only able to process the AC signal as it's usual at quasi-floating gate transistors but also the DC which extends the applicability of the proposed circuit. In conclu
- The field of low-voltage low-power CMOS technology has grown rapidly in recent years; it is an essential prerequisite particularly for portable electronic equipment and implantable medical devices due to its influence on battery lifetime. Recently, significant improvements in implementing circuits working in the low-voltage low-power area have been achieved, but circuit designers face severe challenges when trying to improve or even maintain the circuit performance with reduced supply voltage. In this paper, a low-voltage ultra-low-power current conveyor second generation CCII based on quasi-floating gate transistors is presented. The proposed circuit operates at a very low supply voltage of only +-0.4 V with rail-to-rail voltage swing capability and a total quiescent power consumption of mere 9.5 uW. Further, the proposed circuit is not only able to process the AC signal as it's usual at quasi-floating gate transistors but also the DC which extends the applicability of the proposed circuit. In conclu (en)
|
Title
| - Low-voltage Ultra-Low-Power Current Conveyor Based on Quasi-Floating Gate Transistors
- Low-voltage Ultra-Low-Power Current Conveyor Based on Quasi-Floating Gate Transistors (en)
|
skos:prefLabel
| - Low-voltage Ultra-Low-Power Current Conveyor Based on Quasi-Floating Gate Transistors
- Low-voltage Ultra-Low-Power Current Conveyor Based on Quasi-Floating Gate Transistors (en)
|
skos:notation
| - RIV/00216305:26220/12:PU97454!RIV13-GA0-26220___
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(ED2.1.00/03.0072), P(GA102/09/1681), P(GAP102/11/1379), S
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00216305:26220/12:PU97454
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Quasi-floating gate MOST, Low-voltage low-power MOST, CCII, Quadrature oscillator. (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| |
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Khateb, Fabian
- Khatib, Nabhan
- Kubánek, David
|
http://linked.open...ain/vavai/riv/wos
| |
issn
| |
number of pages
| |
http://localhost/t...ganizacniJednotka
| |