About: Sequence of dualizations of topological spaces is finite.     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Problem 540 of J. D. Lawson and M. Mislove in Open Problems in Topology asks whether the process of taking duals terminate after finitely many steps with topologies that are duals of each other. The problem was for $T_1$ spaces already solved by G. E. Strecker in 1966. For certain topologies on hyperspaces (which are not necessarily $T_1$), the main question was in the positive answered by Bruce S. Burdick and his solution was presented on The First Turkish International Confereence on Topology in Istanbul in 2000. In this paper we bring a complete and positive solution of the problem for all topological spaces. We show that for any topological space $(X,\tau)$ it follows $\tau^{dd}=\tau^{dddd}$. Further, we classifytopological spaces with respect to the number of generated topologies by the process of taking duals.
  • Problem 540 of J. D. Lawson and M. Mislove in Open Problems in Topology asks whether the process of taking duals terminate after finitely many steps with topologies that are duals of each other. The problem was for $T_1$ spaces already solved by G. E. Strecker in 1966. For certain topologies on hyperspaces (which are not necessarily $T_1$), the main question was in the positive answered by Bruce S. Burdick and his solution was presented on The First Turkish International Confereence on Topology in Istanbul in 2000. In this paper we bring a complete and positive solution of the problem for all topological spaces. We show that for any topological space $(X,\tau)$ it follows $\tau^{dd}=\tau^{dddd}$. Further, we classifytopological spaces with respect to the number of generated topologies by the process of taking duals. (en)
  • Obsahem práce je zejména důkaz, že druhá a čtvrtá de Grootova duální topologie libovolného topologického prostoru splývají. Dále práce obsahuje některé další výsledky o vlastnostech duálních topologií. (cs)
Title
  • Posloupnost dualizací topologických prostorů je konečná. (cs)
  • Sequence of dualizations of topological spaces is finite.
  • Sequence of dualizations of topological spaces is finite. (en)
skos:prefLabel
  • Posloupnost dualizací topologických prostorů je konečná. (cs)
  • Sequence of dualizations of topological spaces is finite.
  • Sequence of dualizations of topological spaces is finite. (en)
skos:notation
  • RIV/00216305:26220/02:PU22441!RIV06-GA0-26220___
http://linked.open.../vavai/riv/strany
  • 181-188
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA201/00/1466), Z(MSM 262200012)
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 663341
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26220/02:PU22441
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • saturated set, dual topology, compactness operator (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • CZ - Česká republika
http://linked.open...ontrolniKodProRIV
  • [44A751FAFD4A]
http://linked.open...i/riv/nazevZdroje
  • Proceedings of The Prague Topological Symposium
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 9
http://linked.open...iv/tvurceVysledku
  • Kovár, Martin
http://linked.open...n/vavai/riv/zamer
number of pages
https://schema.org/isbn
  • 0-9730867-0-X
http://localhost/t...ganizacniJednotka
  • 26220
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software