About: Using artificial neural network models to assess water quality in water distribution networks     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The purpose of the research is to assess chlorine concentration in WDS using statistical models based on ANN in combination with Monte-Carlo. This approach offers advantages in contrast to the generally use methods for modeling of chlorine decay in drinking water systems until now. The model was tested on one specific location using the hydraulic and water quality parameters such as flow, pH, temperature, etc. The model allows forecasting chlorine concentration at selected nodes of the water supply system. The results obtained in these selected nodes allow then to compare the chlorine concentration with EPANET in the system under assessment.
  • The purpose of the research is to assess chlorine concentration in WDS using statistical models based on ANN in combination with Monte-Carlo. This approach offers advantages in contrast to the generally use methods for modeling of chlorine decay in drinking water systems until now. The model was tested on one specific location using the hydraulic and water quality parameters such as flow, pH, temperature, etc. The model allows forecasting chlorine concentration at selected nodes of the water supply system. The results obtained in these selected nodes allow then to compare the chlorine concentration with EPANET in the system under assessment. (en)
Title
  • Using artificial neural network models to assess water quality in water distribution networks
  • Using artificial neural network models to assess water quality in water distribution networks (en)
skos:prefLabel
  • Using artificial neural network models to assess water quality in water distribution networks
  • Using artificial neural network models to assess water quality in water distribution networks (en)
skos:notation
  • RIV/00216305:26110/14:PU109680!RIV15-MSM-26110___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S
http://linked.open...iv/cisloPeriodika
  • 70
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 52405
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26110/14:PU109680
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • water distribution systems, chlorine decay, artificial neural networks, Monte Carlo Method (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [469F77E4F443]
http://linked.open...i/riv/nazevZdroje
  • Procedia Engineering
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 2014
http://linked.open...iv/tvurceVysledku
  • Tuhovčák, Ladislav
  • Cuesta Cordoba, Gustavo Andres
  • Tauš, Miloslav
issn
  • 1877-7058
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.proeng.2014.02.045
http://localhost/t...ganizacniJednotka
  • 26110
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 77 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software