About: Model Checking of Biological Systems     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • The goal of computational systems biology is to develop models that can predict and explain uknown facts about the dynamics of biological systems, especially, non-trivial behaviour emerging from the interplay among the enormous number of individual biochemical components. The models are based on known first principles, wet-lab measurements, and existing hypotheses available in literature. A lot of information remains unknown, e.g., quantitative parameters such as rates of individual biochemical events. All the known or expected biological facts can be formalized in temporal logics. Model checking techniques known from formal verification can be then used to explore models with respect to a given set of temporal properties (dynamical constraints). The space of uncertainty in models can be then restricted by means of these constraints. This gives the modellers a powerful alternative to traditional parameter fitting methods.
  • The goal of computational systems biology is to develop models that can predict and explain uknown facts about the dynamics of biological systems, especially, non-trivial behaviour emerging from the interplay among the enormous number of individual biochemical components. The models are based on known first principles, wet-lab measurements, and existing hypotheses available in literature. A lot of information remains unknown, e.g., quantitative parameters such as rates of individual biochemical events. All the known or expected biological facts can be formalized in temporal logics. Model checking techniques known from formal verification can be then used to explore models with respect to a given set of temporal properties (dynamical constraints). The space of uncertainty in models can be then restricted by means of these constraints. This gives the modellers a powerful alternative to traditional parameter fitting methods. (en)
Title
  • Model Checking of Biological Systems
  • Model Checking of Biological Systems (en)
skos:prefLabel
  • Model Checking of Biological Systems
  • Model Checking of Biological Systems (en)
skos:notation
  • RIV/00216224:14330/13:00070437!RIV14-MSM-14330___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(EE2.3.20.0256), S
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 88721
http://linked.open...ai/riv/idVysledku
  • RIV/00216224:14330/13:00070437
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • model checking; systems biology; parameter synthesis (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [FC2B97A488E8]
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Šafránek, David
http://localhost/t...ganizacniJednotka
  • 14330
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software