Attributes | Values |
---|
rdf:type
| |
Description
| - Tuttův polynom je známý obtížný grafový invariant, pro který jsou známy efektivní algoritmy jen v několika třídách grafů jako ty s omezenou stromovou šířkou. Pojem klikové šířky rozšiřuje kografy a je obecnější než stromová šířka. My ukážeme subexponeciální algoritmus (v čase expO(n2/3) ) počítající Tuttův polynom na kografech. Tento algoritmus je možno rozšířit na subexponenciální algoritmus pro všechny grafy omezené klikové šířky. Náš algoritmus dokonce počítá tzv. U-polynom. (cs)
- The Tutte polynomial is a notoriously hard graph invariant, and efficient algorithms for it are known only for a few special graph classes, like for those of bounded tree-width. The notion of clique-width extends the definition of cograhs (graphs without induced P4), and it is a more general notion than that of tree-width. We show a subexponential algorithm (running in time expO(n2/3) ) for computing the Tutte polynomial on cographs. The algorithm can be extended to a subexponential algorithm computing the Tutte polynomial on on all graphs of bounded clique-width. In fact, our algorithm computes the more general U-polynomial.
- The Tutte polynomial is a notoriously hard graph invariant, and efficient algorithms for it are known only for a few special graph classes, like for those of bounded tree-width. The notion of clique-width extends the definition of cograhs (graphs without induced P4), and it is a more general notion than that of tree-width. We show a subexponential algorithm (running in time expO(n2/3) ) for computing the Tutte polynomial on cographs. The algorithm can be extended to a subexponential algorithm computing the Tutte polynomial on on all graphs of bounded clique-width. In fact, our algorithm computes the more general U-polynomial. (en)
|
Title
| - Computing the Tutte Polynomial on Graphs of Bounded Clique-Width (extended abstract)
- Výpočet Tuttova polynomu na grafech omezené clique-width (cs)
- Computing the Tutte Polynomial on Graphs of Bounded Clique-Width (extended abstract) (en)
|
skos:prefLabel
| - Computing the Tutte Polynomial on Graphs of Bounded Clique-Width (extended abstract)
- Výpočet Tuttova polynomu na grafech omezené clique-width (cs)
- Computing the Tutte Polynomial on Graphs of Bounded Clique-Width (extended abstract) (en)
|
skos:notation
| - RIV/00216224:14330/05:00012661!RIV08-MSM-14330___
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(1M0545), P(GA201/05/0050)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00216224:14330/05:00012661
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Tutte polynomial; cographs; clique-width; subexponential algorithm; U polynomial (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - DE - Spolková republika Německo
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - Lecture Notes in Computer Science
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Hliněný, Petr
- Gimenez, Omer
- Noy, Marc
|
issn
| |
number of pages
| |
http://localhost/t...ganizacniJednotka
| |