About: Weyl disks and square summable solutions for discrete symplectic systems with jointly varying endpoints     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • In this paper we develop the spectral theory for discrete symplectic systems with general jointly varying endpoints. This theory includes a characterization of the eigenvalues, construction of the M-lambda function and Weyl disks, their matrix radii and centers, statements about the number of square summable solutions, and limit point or limit circle analysis. These results are new even in some particular cases, such as for the periodic and antiperiodic endpoints, or for discrete symplectic systems with special linear dependence on the spectral parameter. The method utilizes a new transformation to separated endpoints, which is simpler and more transparent than the one in the known literature.
  • In this paper we develop the spectral theory for discrete symplectic systems with general jointly varying endpoints. This theory includes a characterization of the eigenvalues, construction of the M-lambda function and Weyl disks, their matrix radii and centers, statements about the number of square summable solutions, and limit point or limit circle analysis. These results are new even in some particular cases, such as for the periodic and antiperiodic endpoints, or for discrete symplectic systems with special linear dependence on the spectral parameter. The method utilizes a new transformation to separated endpoints, which is simpler and more transparent than the one in the known literature. (en)
Title
  • Weyl disks and square summable solutions for discrete symplectic systems with jointly varying endpoints
  • Weyl disks and square summable solutions for discrete symplectic systems with jointly varying endpoints (en)
skos:prefLabel
  • Weyl disks and square summable solutions for discrete symplectic systems with jointly varying endpoints
  • Weyl disks and square summable solutions for discrete symplectic systems with jointly varying endpoints (en)
skos:notation
  • RIV/00216224:14310/13:00066248!RIV14-MSM-14310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(EE2.3.30.0009), P(GAP201/10/1032)
http://linked.open...iv/cisloPeriodika
  • 232
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 117265
http://linked.open...ai/riv/idVysledku
  • RIV/00216224:14310/13:00066248
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Discrete symplectic system; Eigenvalue; Weyl-Titchmarsh theory; M-lambda function; Square summable solution; Jointly varying endpoints; Periodic endpoints (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • DE - Spolková republika Německo
http://linked.open...ontrolniKodProRIV
  • [1BAFB9045611]
http://linked.open...i/riv/nazevZdroje
  • Advances in Difference Equations
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 2013
http://linked.open...iv/tvurceVysledku
  • Zemánek, Petr
  • Šimon Hilscher, Roman
http://linked.open...ain/vavai/riv/wos
  • 000324372800002
issn
  • 1687-1847
number of pages
http://bibframe.org/vocab/doi
  • 10.1186/1687-1847-2013-232
http://localhost/t...ganizacniJednotka
  • 14310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software