About: Optimal odor intensity in olfactory neuronal models     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Signal processing in olfactory systems is initiated by binding of odorant molecules to receptor molecules embedded in the membranes of sensory neurons. An approach, which we use here, is based on stochastic variant ofthe law of mass action as a neuronal model. A model experiment is considered, in which a fixed odorant concentration is applied several times and realizations of steady-state characteristics are observed. The response is assumed to be a random variable with some probability density function belonging to a parametric family with the signal as a parameter. As a measure how well the signal can be estimated from the response, the Fisher information and its lower bounds are used. Another optimality measures are based on the theory of information, especially conditional and unconditional differential entropy. The study extends our previous results.
  • Signal processing in olfactory systems is initiated by binding of odorant molecules to receptor molecules embedded in the membranes of sensory neurons. An approach, which we use here, is based on stochastic variant ofthe law of mass action as a neuronal model. A model experiment is considered, in which a fixed odorant concentration is applied several times and realizations of steady-state characteristics are observed. The response is assumed to be a random variable with some probability density function belonging to a parametric family with the signal as a parameter. As a measure how well the signal can be estimated from the response, the Fisher information and its lower bounds are used. Another optimality measures are based on the theory of information, especially conditional and unconditional differential entropy. The study extends our previous results. (en)
Title
  • Optimal odor intensity in olfactory neuronal models
  • Optimal odor intensity in olfactory neuronal models (en)
skos:prefLabel
  • Optimal odor intensity in olfactory neuronal models
  • Optimal odor intensity in olfactory neuronal models (en)
skos:notation
  • RIV/00216224:14310/09:00039594!RIV10-MSM-14310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(LC06024)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 331877
http://linked.open...ai/riv/idVysledku
  • RIV/00216224:14310/09:00039594
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • sensory neurons; Fisher information; lower bounds; input-output curve (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [49BC6955843B]
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Lánský, Petr
  • Pokora, Ondřej
http://localhost/t...ganizacniJednotka
  • 14310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 24 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software