About: Insect identification using Artificial Neural Networks (ANN)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Introduction: The progress in information technology has opened opportunities for the computer-assisted taxonomy. Methods: The use of ANN requires a training database in which specimens, correctly identified by experts, are included. For ANN inputs can be used digital images, optically sensed wing beat frequency spectra, near-infrared reflectance spectra, bioacoustic recordings, chemotaxonomy or morphometry. An ANN model is designed to find a relationship between the characters (=input) and species (=output). The quality of the training set is an essential prerequisite to obtaining reliable identifications. Results: Our case studies used morphometric data mostly. The high percentage of correctly identified specimens (about 97 %) is promising for a wider use of ANN. Conclusions: ANN is cheap and non-destructive suitable also for type material or permanently mounted slides. ANN have the potential to enhance the practice of routine identification with a non-expert as technical help.
  • Introduction: The progress in information technology has opened opportunities for the computer-assisted taxonomy. Methods: The use of ANN requires a training database in which specimens, correctly identified by experts, are included. For ANN inputs can be used digital images, optically sensed wing beat frequency spectra, near-infrared reflectance spectra, bioacoustic recordings, chemotaxonomy or morphometry. An ANN model is designed to find a relationship between the characters (=input) and species (=output). The quality of the training set is an essential prerequisite to obtaining reliable identifications. Results: Our case studies used morphometric data mostly. The high percentage of correctly identified specimens (about 97 %) is promising for a wider use of ANN. Conclusions: ANN is cheap and non-destructive suitable also for type material or permanently mounted slides. ANN have the potential to enhance the practice of routine identification with a non-expert as technical help. (en)
Title
  • Insect identification using Artificial Neural Networks (ANN)
  • Insect identification using Artificial Neural Networks (ANN) (en)
skos:prefLabel
  • Insect identification using Artificial Neural Networks (ANN)
  • Insect identification using Artificial Neural Networks (ANN) (en)
skos:notation
  • RIV/00216224:14310/08:00042029!RIV11-MSM-14310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S, Z(MSM0021622416)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 372578
http://linked.open...ai/riv/idVysledku
  • RIV/00216224:14310/08:00042029
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Artificial Neural Networks; ANN; Artificial Intelligence; Entomology; Identification (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [BE556C8674B4]
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Fedor, Peter
  • Havel, Josef
  • Malenovský, Igor
  • Muráriková, Natália
  • Vaňhara, Jaromír
http://linked.open...n/vavai/riv/zamer
http://localhost/t...ganizacniJednotka
  • 14310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 85 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software