About: Better bounds for incremental frequency allocation in bipartite graphs     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • We study frequency allocation in wireless networks. A wireless network is modeled by an undirected graph, with vertices corresponding to cells. In each vertex, we have a certain number of requests, and each of those requests must be assigned a different frequency. Edges represent conflicts between cells, meaning that frequencies in adjacent vertices must be different as well. The objective is to minimize the total number of used frequencies. The offline version of the problem is known to be NP-hard. In the incremental version, requests for frequencies arrive over time and the algorithm is required to assign a frequency to a request as soon as it arrives. Competitive incremental algorithms have been studied for several classes of graphs. For paths, the optimal (asymptotic) ratio is known to be 4/3, while for hexagonal-cell graphs it is between 1.5 and 1.9126. For xi-colorable graphs, the ratio of (xi + 1)/2 can be achieved. In this paper, we prove nearly tight bounds on the asymptotic competitive ratio for bipartite graphs, showing that it is between 1.428 and 1.433. This improves the previous lower bound of 4/3 and upper bound of 1.5. Our proofs are based on reducing the incremental problem to a purely combinatorial (equivalent) problem of constructing set families with certain intersection properties. (C) 2012 Elsevier B.V. All rights reserved.
  • We study frequency allocation in wireless networks. A wireless network is modeled by an undirected graph, with vertices corresponding to cells. In each vertex, we have a certain number of requests, and each of those requests must be assigned a different frequency. Edges represent conflicts between cells, meaning that frequencies in adjacent vertices must be different as well. The objective is to minimize the total number of used frequencies. The offline version of the problem is known to be NP-hard. In the incremental version, requests for frequencies arrive over time and the algorithm is required to assign a frequency to a request as soon as it arrives. Competitive incremental algorithms have been studied for several classes of graphs. For paths, the optimal (asymptotic) ratio is known to be 4/3, while for hexagonal-cell graphs it is between 1.5 and 1.9126. For xi-colorable graphs, the ratio of (xi + 1)/2 can be achieved. In this paper, we prove nearly tight bounds on the asymptotic competitive ratio for bipartite graphs, showing that it is between 1.428 and 1.433. This improves the previous lower bound of 4/3 and upper bound of 1.5. Our proofs are based on reducing the incremental problem to a purely combinatorial (equivalent) problem of constructing set families with certain intersection properties. (C) 2012 Elsevier B.V. All rights reserved. (en)
Title
  • Better bounds for incremental frequency allocation in bipartite graphs
  • Better bounds for incremental frequency allocation in bipartite graphs (en)
skos:prefLabel
  • Better bounds for incremental frequency allocation in bipartite graphs
  • Better bounds for incremental frequency allocation in bipartite graphs (en)
skos:notation
  • RIV/00216208:11320/13:10190754!RIV14-GA0-11320___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GBP202/12/G061), P(GEGIG/11/E023), P(IAA100190902)
http://linked.open...iv/cisloPeriodika
  • November
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 63139
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/13:10190754
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Graph algorithms; Frequency allocation; Online algorithms (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [19D509176CAF]
http://linked.open...i/riv/nazevZdroje
  • Theoretical Computer Science
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 514
http://linked.open...iv/tvurceVysledku
  • Jeż, Łukasz
  • Sgall, Jiří
  • Chrobak, Marek
http://linked.open...ain/vavai/riv/wos
  • 000329014000006
issn
  • 0304-3975
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.tcs.2012.05.020
http://localhost/t...ganizacniJednotka
  • 11320
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software