About: Combinatorial bounds on relational complexity     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • An ultrahomogeneous structure is a (finite or countable) relational structure for which every partial isomorphism between finite substructures can be extended to a global isomorphism. This very strong symmetry condition implies that there are just a few ultrahomogeneous structures. For example, by [14], there are just countably many ultrahomogeneous undirected graphs. The classification program is one of the celebrated lines of research in the model theory, see [4, 15]. Various measures were introduced in order to modify a structure to an ultrahomogeneous one. A particularly interesting measure is the minimal arity of added relations (i.e. the minimal arity of an extension or lift) which suffice to produce an ultrahomogeneous structure. If these added relations are not changing the automorphism group then the problem is called the relational complexity and this is the subject of this paper. In the context of permutation groups, the relational complexity was defined in [5] and was recently popularized by Cherlin [2,3]. We determine the relational complexity of one of the most natural class of structures (the class of structures defined by forbidden homomorphisms). This class has a (countably) universal structure [6]. As a consequence of our main result (Theorem 3.1) we strengthen this by determining its relational complexity. Although formulated in the context of model theory this result has a combinatorial character. Full details will appear in [9]
  • An ultrahomogeneous structure is a (finite or countable) relational structure for which every partial isomorphism between finite substructures can be extended to a global isomorphism. This very strong symmetry condition implies that there are just a few ultrahomogeneous structures. For example, by [14], there are just countably many ultrahomogeneous undirected graphs. The classification program is one of the celebrated lines of research in the model theory, see [4, 15]. Various measures were introduced in order to modify a structure to an ultrahomogeneous one. A particularly interesting measure is the minimal arity of added relations (i.e. the minimal arity of an extension or lift) which suffice to produce an ultrahomogeneous structure. If these added relations are not changing the automorphism group then the problem is called the relational complexity and this is the subject of this paper. In the context of permutation groups, the relational complexity was defined in [5] and was recently popularized by Cherlin [2,3]. We determine the relational complexity of one of the most natural class of structures (the class of structures defined by forbidden homomorphisms). This class has a (countably) universal structure [6]. As a consequence of our main result (Theorem 3.1) we strengthen this by determining its relational complexity. Although formulated in the context of model theory this result has a combinatorial character. Full details will appear in [9] (en)
Title
  • Combinatorial bounds on relational complexity
  • Combinatorial bounds on relational complexity (en)
skos:prefLabel
  • Combinatorial bounds on relational complexity
  • Combinatorial bounds on relational complexity (en)
skos:notation
  • RIV/00216208:11320/13:10190365!RIV14-GA0-11320___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GBP202/12/G061), P(LL1201)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 65964
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/13:10190365
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • automorphism; relational structure; homogeneous; graphs; relational complexity (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [4D30067BA5C3]
http://linked.open...v/mistoKonaniAkce
  • Itálie
http://linked.open...i/riv/mistoVydani
  • Itálie
http://linked.open...i/riv/nazevZdroje
  • CRM Series
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Hartman, David
  • Nešetřil, Jaroslav
  • Hubička, Jan
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/978-88-7642-475-5_90
http://purl.org/ne...btex#hasPublisher
  • Scuola Normale Superiore
https://schema.org/isbn
  • 978-88-7642-474-8
http://localhost/t...ganizacniJednotka
  • 11320
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 47 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software