About: Complex between Human RNase HI and the phosphonate-DNA/RNA duplex: Molecular dynamics study     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Our 200 ns MD simulations show that even fully modified oligonucleotides bearing the 3'-O-P-CH2-O-5' (but not 3'-O-CH2-P-O-5') phosphonate linkages can be successfully attached to the surface of Human RNase H. It enables to explain that oligonucleotides consisting of the alternating 3'-O-P-CH2-O-5' phosphonate and phosphodiester linkages are capable to elicit the RNase H activity (while the 3'-O-CH2-P-O-5' phosphonates are completely inactive). Stability of the binuclear active site of Human RNase H was achieved using the one-atom model for Mg2+ in conjunction with a polarized phosphate group of the scissile bond, which is wedged between both magnesium ions. The reference MD simulation (lasting for 1000 ns), which was produced using a well-established seven-point (with dummy atoms) model for Mg2+ led to essentially the same results. The MD run (lasting for 500 ns) produced for the Therms thermophilus Argonaute enzyme shows the transferability of our approach for the stabilization of a binuclear active site. Glu512 was bound in the T. thermophilus Argonaute active site to the 2'-OH of the nucleotide adjacent to the scissile phosphate and one of the two active-site divalent metal ions in exactly the same way as Glu186 in Human RNase H. Glu512 thus completes the catalytic tetrad of Argonaute.
  • Our 200 ns MD simulations show that even fully modified oligonucleotides bearing the 3'-O-P-CH2-O-5' (but not 3'-O-CH2-P-O-5') phosphonate linkages can be successfully attached to the surface of Human RNase H. It enables to explain that oligonucleotides consisting of the alternating 3'-O-P-CH2-O-5' phosphonate and phosphodiester linkages are capable to elicit the RNase H activity (while the 3'-O-CH2-P-O-5' phosphonates are completely inactive). Stability of the binuclear active site of Human RNase H was achieved using the one-atom model for Mg2+ in conjunction with a polarized phosphate group of the scissile bond, which is wedged between both magnesium ions. The reference MD simulation (lasting for 1000 ns), which was produced using a well-established seven-point (with dummy atoms) model for Mg2+ led to essentially the same results. The MD run (lasting for 500 ns) produced for the Therms thermophilus Argonaute enzyme shows the transferability of our approach for the stabilization of a binuclear active site. Glu512 was bound in the T. thermophilus Argonaute active site to the 2'-OH of the nucleotide adjacent to the scissile phosphate and one of the two active-site divalent metal ions in exactly the same way as Glu186 in Human RNase H. Glu512 thus completes the catalytic tetrad of Argonaute. (en)
Title
  • Complex between Human RNase HI and the phosphonate-DNA/RNA duplex: Molecular dynamics study
  • Complex between Human RNase HI and the phosphonate-DNA/RNA duplex: Molecular dynamics study (en)
skos:prefLabel
  • Complex between Human RNase HI and the phosphonate-DNA/RNA duplex: Molecular dynamics study
  • Complex between Human RNase HI and the phosphonate-DNA/RNA duplex: Molecular dynamics study (en)
skos:notation
  • RIV/00216208:11320/13:10190058!RIV14-GA0-11320___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GA202/09/0193)
http://linked.open...iv/cisloPeriodika
  • červenec
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 66442
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/13:10190058
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • ACEMD; Molecular dynamics; Phosphonate; RNAi; Argonaute; Antisense oligonucleotides; RNase H (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [ABE20BF50D41]
http://linked.open...i/riv/nazevZdroje
  • Journal of Molecular Graphics and Modelling
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 44
http://linked.open...iv/tvurceVysledku
  • Barvík, Ivan
  • Maláč, Kamil
http://linked.open...ain/vavai/riv/wos
  • 000324965300009
issn
  • 1093-3263
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.jmgm.2013.05.004
http://localhost/t...ganizacniJednotka
  • 11320
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software