About: Efficient Extraction of Feature Signatures Using Multi-GPU Architecture     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Recent popular applications like online video analysis or image exploration techniques utilizing content-based retrieval create a serious demand for fast and scalable feature extraction implementations. One of the promising content-based retrieval models is based on the feature signatures and the signature quadratic form distance. Although the model proved its competitiveness in terms of the effectiveness, the slow feature extraction comprising costly k-means clustering limits the model only for preprocessing steps. In this paper, we present a highly efficient multi-GPU implementation of the feature extraction process, reaching more than two orders of magnitude speedup with respect to classical CPU platform and the peak throughput that exceeds $8$~thousand signatures per second. Such an implementation allows to extract requested batches of frames or images online without annoying delays. Moreover, besides online extraction tasks, our GPU implementation can be used also in a traditional preprocessing and training phase. For example, fast extraction allows indexing of huge databases or inspecting significantly larger parameter space when searching for an optimal similarity model configuration that is optimal according to both efficiency and effectiveness.
  • Recent popular applications like online video analysis or image exploration techniques utilizing content-based retrieval create a serious demand for fast and scalable feature extraction implementations. One of the promising content-based retrieval models is based on the feature signatures and the signature quadratic form distance. Although the model proved its competitiveness in terms of the effectiveness, the slow feature extraction comprising costly k-means clustering limits the model only for preprocessing steps. In this paper, we present a highly efficient multi-GPU implementation of the feature extraction process, reaching more than two orders of magnitude speedup with respect to classical CPU platform and the peak throughput that exceeds $8$~thousand signatures per second. Such an implementation allows to extract requested batches of frames or images online without annoying delays. Moreover, besides online extraction tasks, our GPU implementation can be used also in a traditional preprocessing and training phase. For example, fast extraction allows indexing of huge databases or inspecting significantly larger parameter space when searching for an optimal similarity model configuration that is optimal according to both efficiency and effectiveness. (en)
Title
  • Efficient Extraction of Feature Signatures Using Multi-GPU Architecture
  • Efficient Extraction of Feature Signatures Using Multi-GPU Architecture (en)
skos:prefLabel
  • Efficient Extraction of Feature Signatures Using Multi-GPU Architecture
  • Efficient Extraction of Feature Signatures Using Multi-GPU Architecture (en)
skos:notation
  • RIV/00216208:11320/13:10139388!RIV14-GA0-11320___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GAP202/11/0968), S
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 72066
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/13:10139388
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • parallel; GPU; feature extraction; similarity search (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [EC630F85348B]
http://linked.open...v/mistoKonaniAkce
  • Huangshan, China
http://linked.open...i/riv/mistoVydani
  • London, New York
http://linked.open...i/riv/nazevZdroje
  • Advances in Multimedia Modeling
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Lokoč, Jakub
  • Skopal, Tomáš
  • Kruliš, Martin
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
issn
  • 0302-9743
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/978-3-642-35728-2
http://purl.org/ne...btex#hasPublisher
  • Springer Heidelberg Dordrecht
https://schema.org/isbn
  • 978-3-642-35727-5
http://localhost/t...ganizacniJednotka
  • 11320
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software