About: Combining CPU and GPU architectures for fast similarity search     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • The Signature Quadratic Form Distance on feature signatures represents a flexible distance-based similarity model for effective content-based multimedia retrieval. Although metric indexing approaches are able to speed up query processing by two orders of magnitude, their applicability to large-scale multimedia databases containing billions of images is still a challenging issue. In this paper, we propose a parallel approach that balances the utilization of CPU and many-core GPUs for efficient similarity search with the Signature Quadratic Form Distance. In particular, we show how to process multiple distance computations and other parts of the search procedure in parallel, achieving maximal performance of the combined CPU/GPU system. The experimental evaluation demonstrates that our approach implemented on a common workstation with 2 GPU cards outperforms traditional parallel implementation on a high-end 48-core NUMA server in terms of efficiency almost by an order of magnitude. If we consider also the price of the high-end server that is ten times higher than that of the GPU workstation then, based on price/performance ratio, the GPU-based similarity search beats the CPU-based solution by almost two orders of magnitude. Although proposed for the SQFD, our approach of fast GPU-based similarity search is applicable for any distance function that is efficiently parallelizable in the SIMT execution model.
  • The Signature Quadratic Form Distance on feature signatures represents a flexible distance-based similarity model for effective content-based multimedia retrieval. Although metric indexing approaches are able to speed up query processing by two orders of magnitude, their applicability to large-scale multimedia databases containing billions of images is still a challenging issue. In this paper, we propose a parallel approach that balances the utilization of CPU and many-core GPUs for efficient similarity search with the Signature Quadratic Form Distance. In particular, we show how to process multiple distance computations and other parts of the search procedure in parallel, achieving maximal performance of the combined CPU/GPU system. The experimental evaluation demonstrates that our approach implemented on a common workstation with 2 GPU cards outperforms traditional parallel implementation on a high-end 48-core NUMA server in terms of efficiency almost by an order of magnitude. If we consider also the price of the high-end server that is ten times higher than that of the GPU workstation then, based on price/performance ratio, the GPU-based similarity search beats the CPU-based solution by almost two orders of magnitude. Although proposed for the SQFD, our approach of fast GPU-based similarity search is applicable for any distance function that is efficiently parallelizable in the SIMT execution model. (en)
Title
  • Combining CPU and GPU architectures for fast similarity search
  • Combining CPU and GPU architectures for fast similarity search (en)
skos:prefLabel
  • Combining CPU and GPU architectures for fast similarity search
  • Combining CPU and GPU architectures for fast similarity search (en)
skos:notation
  • RIV/00216208:11320/12:10124107!RIV13-MSM-11320___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S
http://linked.open...iv/cisloPeriodika
  • 3-4
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 127710
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/12:10124107
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Multimedia databases; Ptolemaic; Metric; Pivot table; GPU; Parallel computing; Database indexing; Similarity search; DISTANCE; IMAGE RETRIEVAL (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [19768A20E39F]
http://linked.open...i/riv/nazevZdroje
  • DISTRIBUTED AND PARALLEL DATABASES
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 30
http://linked.open...iv/tvurceVysledku
  • Lokoč, Jakub
  • Skopal, Tomáš
  • Beecks, Christian
  • Kruliš, Martin
http://linked.open...ain/vavai/riv/wos
  • 000305520200002
issn
  • 0926-8782
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/s10619-012-7092-4
http://localhost/t...ganizacniJednotka
  • 11320
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software