About: Finite duality for some minor closed classes     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Let K be a class of finite graphs and F1,...,Fm be a set of finite graphs. Then, K is said to have finite-duality if there exists a graph U in K such that for any graph G in K, G is homomorphic to U if and only if Fi is not homomorphic to G, for all i=1,2,,m. In this note, we answer this positively a problem of the first author by showing minor closed subclasses containing arbitrary long anti-chains and yet having the finite-duality property.
  • Let K be a class of finite graphs and F1,...,Fm be a set of finite graphs. Then, K is said to have finite-duality if there exists a graph U in K such that for any graph G in K, G is homomorphic to U if and only if Fi is not homomorphic to G, for all i=1,2,,m. In this note, we answer this positively a problem of the first author by showing minor closed subclasses containing arbitrary long anti-chains and yet having the finite-duality property. (en)
  • Nechť K je třída konečných grafů a F1,..., Fm je množina konečných grafů. Potom řekneme, že K má konečnou dualitu, pokud existuje graf U takový, že pro každý graf G z K, G je homomorfní s U, právě když Fi není homomorfní s G, pro všechna i=1,...,m. V tomto článku pozitivně vyřešíme problém prvního autora, když zkonstruujeme minorově uzavřené třídy obsahující libovolně dlouhé antiřetězce a mající konečnou dualitu. (cs)
Title
  • Finite duality for some minor closed classes
  • Finite duality for some minor closed classes (en)
  • Konečná dualita pro některé minorově uzavřené třídy (cs)
skos:prefLabel
  • Finite duality for some minor closed classes
  • Finite duality for some minor closed classes (en)
  • Konečná dualita pro některé minorově uzavřené třídy (cs)
skos:notation
  • RIV/00216208:11320/07:00005050!RIV08-MSM-11320___
http://linked.open.../vavai/riv/strany
  • 579;585
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1M0545), Z(MSM0021620838)
http://linked.open...iv/cisloPeriodika
  • neuvedeno
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 422053
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/07:00005050
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Finite; duality; minor; closed; classes (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [6E5F2A1CD194]
http://linked.open...i/riv/nazevZdroje
  • Electronic Notes in Discrete Mathematics
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 29
http://linked.open...iv/tvurceVysledku
  • Nešetřil, Jaroslav
  • Nigoussie, Yared
http://linked.open...n/vavai/riv/zamer
issn
  • 1571-0653
number of pages
http://localhost/t...ganizacniJednotka
  • 11320
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software