About: Anisotropy of magnetic susceptibility in variable low-fields: a review     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Theory of the Anisotropy of Magnetic Susceptibility (AMS) assumes field-independent rock susceptibility in the low fields used by common AMS meters. This is valid for rocks whose AMS is carried by diamagnetic and paramagnetic minerals and also by pure magnetite, while rocks with pyrrhotite, hematite or titanomagnetite may show significant variation of susceptibility in common measuring fields. Consequently, the use of the contemporary AMS theory is in principle incorrect in these cases. Fortunately, it has been shown by practical measurements and mathematical modelling of the measuring process that the variations of the principal directions and of the AMS ellipsoid shape with field are very weak, which is important in most geological applications. The degree of AMS, however, may show conspicuous variation with field and, if one wants to make precise quantitative fabric interpretation, it is desirable to work with the AMS of the field-independent component. Three methods exist for simultaneous determination of the field-independent and field-dependent AMS components, all based on standard AMS measurement in variable fields within the Rayleigh Law range. The field-dependence of the AMS can be used in solving some geological problems. For example, in volcanic and dyke rocks with inverse magnetic fabric, one can decide whether this inversion has geological (special flow regime of lava) or physical (SD vs. MD grains) causes. In rocks consisting of two magnetic fractions, one with field-independent susceptibility (magnetite, paramagnetic minerals) and the other possessing the field-dependent susceptibility (titanomagnetite, hematite, pyrrhotite), one can separate the AMS of the latter fraction and in favourable cases also of the former fraction.
  • Theory of the Anisotropy of Magnetic Susceptibility (AMS) assumes field-independent rock susceptibility in the low fields used by common AMS meters. This is valid for rocks whose AMS is carried by diamagnetic and paramagnetic minerals and also by pure magnetite, while rocks with pyrrhotite, hematite or titanomagnetite may show significant variation of susceptibility in common measuring fields. Consequently, the use of the contemporary AMS theory is in principle incorrect in these cases. Fortunately, it has been shown by practical measurements and mathematical modelling of the measuring process that the variations of the principal directions and of the AMS ellipsoid shape with field are very weak, which is important in most geological applications. The degree of AMS, however, may show conspicuous variation with field and, if one wants to make precise quantitative fabric interpretation, it is desirable to work with the AMS of the field-independent component. Three methods exist for simultaneous determination of the field-independent and field-dependent AMS components, all based on standard AMS measurement in variable fields within the Rayleigh Law range. The field-dependence of the AMS can be used in solving some geological problems. For example, in volcanic and dyke rocks with inverse magnetic fabric, one can decide whether this inversion has geological (special flow regime of lava) or physical (SD vs. MD grains) causes. In rocks consisting of two magnetic fractions, one with field-independent susceptibility (magnetite, paramagnetic minerals) and the other possessing the field-dependent susceptibility (titanomagnetite, hematite, pyrrhotite), one can separate the AMS of the latter fraction and in favourable cases also of the former fraction. (en)
Title
  • Anisotropy of magnetic susceptibility in variable low-fields: a review
  • Anisotropy of magnetic susceptibility in variable low-fields: a review (en)
skos:prefLabel
  • Anisotropy of magnetic susceptibility in variable low-fields: a review
  • Anisotropy of magnetic susceptibility in variable low-fields: a review (en)
skos:notation
  • RIV/00216208:11310/11:10110996!RIV12-MSM-11310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • Z(MSM0021620855)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 186307
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11310/11:10110996
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • review; low-fields; variable; susceptibility; magnetic; Anisotropy (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [92D0327CF087]
http://linked.open...i/riv/mistoVydani
  • Berlin
http://linked.open...vEdiceCisloSvazku
  • Neuveden
http://linked.open...i/riv/nazevZdroje
  • The Earth's Magnetic Interior
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...v/pocetStranKnihy
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Hrouda, František
http://linked.open...n/vavai/riv/zamer
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/978-94-007-0323-0_19
http://purl.org/ne...btex#hasPublisher
  • Springer-Verlag
https://schema.org/isbn
  • 978-94-007-0322-3
http://localhost/t...ganizacniJednotka
  • 11310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software