About: Antitumor Effects and Cytotoxicity of Recombinant Plant Nucleases     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Recombinant plant nucleases R-TBN1 and R-HBN1 were isolated to homogeneity and examined for their antitumor effects and cytotoxicity. Although antiproliferative effects of both recombinant nucleases were not significant on the ML-2 cell culture in vitro, the nucleases were strongly cytostatic in vivo after their administration intravenously as stabilized conjugates with polyethylene glycol (PEG). Recombinant nucleases were as effective against melanoma tumors as previously studied pine pollen (PN) and mung bean nucleases and their effects were reached at about 10 times lower concentrations compared to the use of bovine seminal RNase (BS-RNase). Because the recombinant nucleases R-HBN1 and R-TBN1 share only 67.4% amino acid identity and showed only partial immunochemical cross-reactivity, their similar anticancerogenic effects can be mainly explained by their catalytical similarity. Both recombinant nucleases showed lower degree of aspermatogenesis compared to BS-RNAse and PN nuclease. Unlike BS-RNase, aspermatogenesis induced by both recombinant nucleases could not be prevented by the homologous antibody complexes. Owing to relatively low cytotoxicity on the one hand, and high efficiency at low protein levels on the other, recombinant plant nucleases R-HBN1 and R-TBN1 appear to be stable biochemical agents that can be targeted as potential antitumor cytostatics.
  • Recombinant plant nucleases R-TBN1 and R-HBN1 were isolated to homogeneity and examined for their antitumor effects and cytotoxicity. Although antiproliferative effects of both recombinant nucleases were not significant on the ML-2 cell culture in vitro, the nucleases were strongly cytostatic in vivo after their administration intravenously as stabilized conjugates with polyethylene glycol (PEG). Recombinant nucleases were as effective against melanoma tumors as previously studied pine pollen (PN) and mung bean nucleases and their effects were reached at about 10 times lower concentrations compared to the use of bovine seminal RNase (BS-RNase). Because the recombinant nucleases R-HBN1 and R-TBN1 share only 67.4% amino acid identity and showed only partial immunochemical cross-reactivity, their similar anticancerogenic effects can be mainly explained by their catalytical similarity. Both recombinant nucleases showed lower degree of aspermatogenesis compared to BS-RNAse and PN nuclease. Unlike BS-RNase, aspermatogenesis induced by both recombinant nucleases could not be prevented by the homologous antibody complexes. Owing to relatively low cytotoxicity on the one hand, and high efficiency at low protein levels on the other, recombinant plant nucleases R-HBN1 and R-TBN1 appear to be stable biochemical agents that can be targeted as potential antitumor cytostatics. (en)
Title
  • Antitumor Effects and Cytotoxicity of Recombinant Plant Nucleases
  • Antitumor Effects and Cytotoxicity of Recombinant Plant Nucleases (en)
skos:prefLabel
  • Antitumor Effects and Cytotoxicity of Recombinant Plant Nucleases
  • Antitumor Effects and Cytotoxicity of Recombinant Plant Nucleases (en)
skos:notation
  • RIV/00216208:11310/09:10111314!RIV12-MSM-11310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GA521/09/1214), Z(AV0Z50450515), Z(AV0Z50510513), Z(MSM0021620808), Z(MSM6046137305), Z(MZ0UHKT2005)
http://linked.open...iv/cisloPeriodika
  • 4
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 303537
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11310/09:10111314
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • H. lupulus; L. esculentum; Plant infiltration; Nicotiana benthamina; Spermatogenesis; Tumor xenografts; Human melanoma; Anticarcinogenic and antiproliferative nucleases (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [3F92E6858BF0]
http://linked.open...i/riv/nazevZdroje
  • Oncology Research
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 18
http://linked.open...iv/tvurceVysledku
  • Matoušek, Jaroslav
  • Podzimek, Tomáš
  • Poučková, Pavla
  • Matoušek, Josef
  • Stehlík, Jan
  • Škvor, Jiří
  • Souček, Josef
http://linked.open...ain/vavai/riv/wos
  • 000272875000004
http://linked.open...n/vavai/riv/zamer
issn
  • 0965-0407
number of pages
http://localhost/t...ganizacniJednotka
  • 11310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 47 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software