Attributes | Values |
---|
rdf:type
| |
rdfs:seeAlso
| |
Description
| - In addition to its anticancer function, p53 (regulated by MDM2) has recently been shown to control intracellular metabolic processes. It participates in the regulation of glucose, fatty and amino acid and purine metabolism, influences mitochondrial integrity and oxidative phosphorylation, insulin sensitivity, antioxidant response and autophagy. With respect to the possible impact of genetic variability in p53 and MDM2 on metabolic compensation the aim of the study was to analyse the effect of common germ line Single Nucleotide Polymorphisms (SNPs) - Arg72Pro in the TP53 and SNP309 in the MDM2 - on the progression of Diabetic Nephropathy (DN), cardiovascular morbidity and mortality and all-cause mortality in Type 2 Diabetes Mellitus (T2DM) subjects. The cross-sectional study comprised a total of 309 (a sum of 155 and 154) unrelated Caucasian diabetic patients with diabetes duration at least 10 years and variable renal function at baseline (309, mean age was 67.2 ± 10.8 years). The stage of diabetic nephropathy was defined according to the urinary albumin excretion and glomerular filtration rate. We found significant difference between CG+GG vs. CC genotypes of the p53 Arg72Pro SNP for DN progression (P=0.046, log-rank test). Carriers of genotypes containing G allele (previously associated with susceptibility to T2DM) had faster progression of DN than CC genotype carriers. We did not find any significant difference between genotypes of MDM2 SNP for any of the end-points studied. Presented findings in general support the role of p53 in the pathogenesis of metabolic diseases, namely progression of hyperglycemia-related morbidity. Nevertheless, further studies are warranted to elucidate the eventual causal involvement of p53 pathway in the development of diabetic complications.
- In addition to its anticancer function, p53 (regulated by MDM2) has recently been shown to control intracellular metabolic processes. It participates in the regulation of glucose, fatty and amino acid and purine metabolism, influences mitochondrial integrity and oxidative phosphorylation, insulin sensitivity, antioxidant response and autophagy. With respect to the possible impact of genetic variability in p53 and MDM2 on metabolic compensation the aim of the study was to analyse the effect of common germ line Single Nucleotide Polymorphisms (SNPs) - Arg72Pro in the TP53 and SNP309 in the MDM2 - on the progression of Diabetic Nephropathy (DN), cardiovascular morbidity and mortality and all-cause mortality in Type 2 Diabetes Mellitus (T2DM) subjects. The cross-sectional study comprised a total of 309 (a sum of 155 and 154) unrelated Caucasian diabetic patients with diabetes duration at least 10 years and variable renal function at baseline (309, mean age was 67.2 ± 10.8 years). The stage of diabetic nephropathy was defined according to the urinary albumin excretion and glomerular filtration rate. We found significant difference between CG+GG vs. CC genotypes of the p53 Arg72Pro SNP for DN progression (P=0.046, log-rank test). Carriers of genotypes containing G allele (previously associated with susceptibility to T2DM) had faster progression of DN than CC genotype carriers. We did not find any significant difference between genotypes of MDM2 SNP for any of the end-points studied. Presented findings in general support the role of p53 in the pathogenesis of metabolic diseases, namely progression of hyperglycemia-related morbidity. Nevertheless, further studies are warranted to elucidate the eventual causal involvement of p53 pathway in the development of diabetic complications. (en)
|
Title
| - HDMX folds the nascent p53 mRNA following activation by the ATM kinase
- HDMX folds the nascent p53 mRNA following activation by the ATM kinase (en)
|
skos:prefLabel
| - HDMX folds the nascent p53 mRNA following activation by the ATM kinase
- HDMX folds the nascent p53 mRNA following activation by the ATM kinase (en)
|
skos:notation
| - RIV/00209805:_____/14:#0000519!RIV15-MSM-00209805
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00209805:_____/14:#0000519
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - HDMX; ATM kinase; p53 mRNA (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - US - Spojené státy americké
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| |
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| |
http://linked.open...ain/vavai/riv/wos
| |
issn
| |
number of pages
| |
http://bibframe.org/vocab/doi
| - 10.1016/j.molcel.2014.02.035
|