About: Chromatographic behaviour predicts the ability of potential nootropics to permeate the blood-brain barrier.     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The log BB parameter is the logarithm of the ratio of a compound's equilibrium concentrations in the brain tissue versus the blood plasma. This parameter is a useful descriptor in assessing the ability of a compound to permeate the blood-brain barrier. The aim of this study was to develop a Hansch-type linear regression QSAR model that correlates the parameter log BB and the retention time of drugs and other organic compounds on a reversed-phase HPLC containing an embedded amide moiety. The retention time was expressed by the capacity factor log k'. The second aim was to estimate the brain's absorption of 2-(azacycloalkyl)acetamidophenoxyacetic acids, which are analogues of piracetam, nefiracetam, and meclofenoxate. Notably, these acids may be novel nootropics. Two simple regression models that relate log BB and log k' were developed from an assay performed using a reversed-phase HPLC that contained an embedded amide moiety. Both the quadratic and linear models yielded statistical parameters comparable to previously published models of log BB dependence on various structural characteristics. The models predict that four members of the substituted phenoxyacetic acid series have a strong chance of permeating the barrier and being absorbed in the brain. The results of this study show that a reversed-phase HPLC system containing an embedded amide moiety is a functional in vitro surrogate of the blood-brain barrier. These results suggest that racetam-type nootropic drugs containing a carboxylic moiety could be more poorly absorbed than analogues devoid of the carboxyl group, especially if the compounds penetrate the barrier by a simple diffusion mechanism.
  • The log BB parameter is the logarithm of the ratio of a compound's equilibrium concentrations in the brain tissue versus the blood plasma. This parameter is a useful descriptor in assessing the ability of a compound to permeate the blood-brain barrier. The aim of this study was to develop a Hansch-type linear regression QSAR model that correlates the parameter log BB and the retention time of drugs and other organic compounds on a reversed-phase HPLC containing an embedded amide moiety. The retention time was expressed by the capacity factor log k'. The second aim was to estimate the brain's absorption of 2-(azacycloalkyl)acetamidophenoxyacetic acids, which are analogues of piracetam, nefiracetam, and meclofenoxate. Notably, these acids may be novel nootropics. Two simple regression models that relate log BB and log k' were developed from an assay performed using a reversed-phase HPLC that contained an embedded amide moiety. Both the quadratic and linear models yielded statistical parameters comparable to previously published models of log BB dependence on various structural characteristics. The models predict that four members of the substituted phenoxyacetic acid series have a strong chance of permeating the barrier and being absorbed in the brain. The results of this study show that a reversed-phase HPLC system containing an embedded amide moiety is a functional in vitro surrogate of the blood-brain barrier. These results suggest that racetam-type nootropic drugs containing a carboxylic moiety could be more poorly absorbed than analogues devoid of the carboxyl group, especially if the compounds penetrate the barrier by a simple diffusion mechanism. (en)
Title
  • Chromatographic behaviour predicts the ability of potential nootropics to permeate the blood-brain barrier.
  • Chromatographic behaviour predicts the ability of potential nootropics to permeate the blood-brain barrier. (en)
skos:prefLabel
  • Chromatographic behaviour predicts the ability of potential nootropics to permeate the blood-brain barrier.
  • Chromatographic behaviour predicts the ability of potential nootropics to permeate the blood-brain barrier. (en)
skos:notation
  • RIV/62157124:16370/13:43872326!RIV14-MSM-16370___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • V
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 65394
http://linked.open...ai/riv/idVysledku
  • RIV/62157124:16370/13:43872326
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • RP-HPLC; Nootropics; Hansch analysis; Embedded amide moiety; Blood-brain barrier (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • AT - Rakouská republika
http://linked.open...ontrolniKodProRIV
  • [0709F8D79578]
http://linked.open...i/riv/nazevZdroje
  • Scientia Pharmaceutica
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 81
http://linked.open...iv/tvurceVysledku
  • Farsa, Oldřich
issn
  • 0036-8709
number of pages
http://bibframe.org/vocab/doi
  • 10.3797/scipharm.1208-19
http://localhost/t...ganizacniJednotka
  • 16370
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 76 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software