About: Scalable algorithms for contact problems with geometrical and material nonlinearities     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Kontaktní modelování je stále velmi náročný problém nelineární výpočetní matematiky. V článku se budeme zabývat aplikací zcela nové varianty FETI metody rozložení oblasti nazývané TFETI (Total FETI) metoda pro řešení kontaktních úloh. Kompatibilita mezi podoblastmi stejně jako Dirichletovy okrajové podmínky se zajišťují prostřednictvím Lagrangeových multiplikátorů předepisovaných podél vzájemných rozhraní a hranic. Popíšeme teoretický základ této metody a její implementaci do vnitřní smyčky algoritmu, který řeší materiálové a geometrické nelinearity prostřednictvím vnějsí smyčky. Pro řešení kontaktních úloh pomocí FETI a TFETI metod používáme %22Modified Proportioning with Reduced Gradient Projection%22 (MPRGP) algoritmy. (cs)
  • Contact modelling is still a challenging problem of non-linear computational mechanics. If the FETI method is applied to the contact problems, the same methodology can be used to prescribe conditions of non-penetration between bodies. We shall obtain a new minimization problem with additional nonnegativity constraints which replace more complex general non-penetration conditions. In this paper we are concerned with application of one of a new variant of the FETI domain decomposition method, called TFETI (Total FETI) method, to the solution of contact problems. Both compatibility between adjacent subdomains and Dirichlet boundary conditions are enforced by Lagrange multipliers acting along the boundary or mutual interfaces. We describe theoretical foundation of the TFETI algorithm and its implementation into the inner loop of the code which treats the material and geometrical effects in the outer loop.
  • Contact modelling is still a challenging problem of non-linear computational mechanics. If the FETI method is applied to the contact problems, the same methodology can be used to prescribe conditions of non-penetration between bodies. We shall obtain a new minimization problem with additional nonnegativity constraints which replace more complex general non-penetration conditions. In this paper we are concerned with application of one of a new variant of the FETI domain decomposition method, called TFETI (Total FETI) method, to the solution of contact problems. Both compatibility between adjacent subdomains and Dirichlet boundary conditions are enforced by Lagrange multipliers acting along the boundary or mutual interfaces. We describe theoretical foundation of the TFETI algorithm and its implementation into the inner loop of the code which treats the material and geometrical effects in the outer loop. (en)
Title
  • Škálovatelné algoritmy pro kontaktní úlohy s geometrickými a materiálovými nelinearitami (cs)
  • Scalable algorithms for contact problems with geometrical and material nonlinearities
  • Scalable algorithms for contact problems with geometrical and material nonlinearities (en)
skos:prefLabel
  • Škálovatelné algoritmy pro kontaktní úlohy s geometrickými a materiálovými nelinearitami (cs)
  • Scalable algorithms for contact problems with geometrical and material nonlinearities
  • Scalable algorithms for contact problems with geometrical and material nonlinearities (en)
skos:notation
  • RIV/61989100:27240/06:00013638!RIV07-GA0-27240___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA101/05/0423)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 498472
http://linked.open...ai/riv/idVysledku
  • RIV/61989100:27240/06:00013638
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • contact problem; domain decomposition; numerical scalability; geometric nonlinearity; material nonlinearity; finite element method (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [6A828EFB0B3A]
http://linked.open...v/mistoKonaniAkce
  • Brunel University, West London, UK
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...ocetUcastnikuAkce
http://linked.open...nichUcastnikuAkce
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/statKonaniAkce
http://linked.open...iv/tvurceVysledku
  • Dobiáš, Jiří
  • Dostál, Zdeněk
  • Vondrák, Vít
  • Pták, Svatopluk
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/ukonceniAkce
http://linked.open.../riv/zahajeniAkce
http://localhost/t...ganizacniJednotka
  • 27240
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 91 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software